|
|
- import torch
- import torch.nn as nn
- import matplotlib
- import matplotlib.pyplot as plt
- import numpy as np
- import time
- import os
-
- from fastspeech import FastSpeech
- from text import text_to_sequence
- import hparams as hp
- import utils
- import audio as Audio
- import glow
- import waveglow
- import time
-
-
-
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
-
-
- def get_FastSpeech(num):
- checkpoint_path = "checkpoint_" + str(num) + ".pth.tar"
- model = nn.DataParallel(FastSpeech()).to(device)
- model.load_state_dict(torch.load(os.path.join(
- hp.checkpoint_path, checkpoint_path),map_location=device)['model'])
- model.eval()
-
- return model
-
-
- def synthesis(model, text, alpha=1.0):
- text = np.array(text_to_sequence(text, hp.text_cleaners))
- text = np.stack([text])
-
- src_pos = np.array([i+1 for i in range(text.shape[1])])
- src_pos = np.stack([src_pos])
- with torch.no_grad():
- sequence = torch.autograd.Variable(
- torch.from_numpy(text)).long()
- src_pos = torch.autograd.Variable(
- torch.from_numpy(src_pos)).long()
-
- mel, mel_postnet = model.module.forward(sequence, src_pos, alpha=alpha)
-
- #script for generating torch script
- #traced_script_module = torch.jit.trace(model,(sequence,src_pos))
- #traced_script_module.save("traced_fastspeech_model.pt")
-
- return mel[0].cpu().transpose(0, 1), \
- mel_postnet[0].cpu().transpose(0, 1), \
- mel.transpose(1, 2), \
- mel_postnet.transpose(1, 2)
-
-
- if __name__ == "__main__":
- # Test
- num = 112000
- alpha = 1.0
- model = get_FastSpeech(num)
- words = "Let’s go out to the airport. The plane landed ten minutes ago."
-
- start = time.time()
- mel, mel_postnet, mel_torch, mel_postnet_torch = synthesis(
- model, words, alpha=alpha)
-
- if not os.path.exists("results"):
- os.mkdir("results")
-
- #do not use any vocoder , mel file generated will be passed to squeezewave vocoder.
- """
- Audio.tools.inv_mel_spec(mel_postnet, os.path.join(
- "results", words + "_" + str(num) + "_griffin_lim.wav"))
-
- wave_glow = utils.get_WaveGlow()
- waveglow.inference.inference(mel_postnet_torch, wave_glow, os.path.join(
- "results", words + "_" + str(num) + "_waveglow.wav"))
-
- tacotron2 = utils.get_Tacotron2()
- mel_tac2, _, _ = utils.load_data_from_tacotron2(words, tacotron2)
- waveglow.inference.inference(torch.stack([torch.from_numpy(
- mel_tac2).cuda()]), wave_glow, os.path.join("results", "tacotron2.wav"))
- utils.plot_data([mel.numpy(), mel_postnet.numpy(), mel_tac2])
-
- """
- #melspec = torch.squeeze(mel_postnet_torch, 0)
- torch.save(mel_postnet_torch, "../SqueezeWave/mel_spectrograms/test.pt")
- end = time.time()
- print("MEL Calculation:")
- print(end-start)
-
-
|