|
|
- # We retain the copyright notice by NVIDIA from the original code. However, we
- # we reserve our rights on the modifications based on the original code.
- #
- # *****************************************************************************
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are met:
- # * Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # * Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- # * Neither the name of the NVIDIA CORPORATION nor the
- # names of its contributors may be used to endorse or promote products
- # derived from this software without specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
- # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- #
- # *****************************************************************************\
- import os
- import random
- import argparse
- import json
- import torch
- import torch.utils.data
- import sys
- from scipy.io.wavfile import read
-
- # We're using the audio processing from TacoTron2 to make sure it matches
- from TacotronSTFT import TacotronSTFT
-
- MAX_WAV_VALUE = 32768.0
-
- def files_to_list(filename):
- """
- Takes a text file of filenames and makes a list of filenames
- """
- with open(filename, encoding='utf-8') as f:
- files = f.readlines()
-
- files = [f.rstrip() for f in files]
- return files
-
- def load_wav_to_torch(full_path):
- """
- Loads wavdata into torch array
- """
- sampling_rate, data = read(full_path)
- return torch.from_numpy(data).float(), sampling_rate
-
-
- class Mel2Samp(torch.utils.data.Dataset):
- """
- This is the main class that calculates the spectrogram and returns the
- spectrogram, audio pair.
- """
- def __init__(self, n_audio_channel, training_files, segment_length,
- filter_length, hop_length, win_length, sampling_rate, mel_fmin,
- mel_fmax):
- self.audio_files = files_to_list(training_files)
- random.seed(1234)
- random.shuffle(self.audio_files)
- self.stft = TacotronSTFT(filter_length=filter_length,
- hop_length=hop_length,
- win_length=win_length,
- sampling_rate=sampling_rate,
- mel_fmin=mel_fmin, mel_fmax=mel_fmax,
- n_group=n_audio_channel)
- self.segment_length = segment_length
- self.sampling_rate = sampling_rate
-
- def get_mel(self, audio):
- audio_norm = audio / MAX_WAV_VALUE
- audio_norm = audio_norm.unsqueeze(0)
- audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
- melspec = self.stft.mel_spectrogram(audio_norm)
- melspec = torch.squeeze(melspec, 0)
- return melspec
-
- def __getitem__(self, index):
- # Read audio
- filename = self.audio_files[index]
- audio, sampling_rate = load_wav_to_torch(filename)
- if sampling_rate != self.sampling_rate:
- raise ValueError("{} SR doesn't match target {} SR".format(
- sampling_rate, self.sampling_rate))
-
- # Take segment
- if audio.size(0) >= self.segment_length:
- max_audio_start = audio.size(0) - self.segment_length
- audio_start = random.randint(0, max_audio_start)
- audio = audio[audio_start:audio_start+self.segment_length]
- else:
- audio = torch.nn.functional.pad(
- audio, (0, self.segment_length - audio.size(0)),
- 'constant').data
-
- mel = self.get_mel(audio)
- audio = audio / MAX_WAV_VALUE
-
- return (mel, audio)
-
- def __len__(self):
- return len(self.audio_files)
-
- # ===================================================================
- # Takes directory of clean audio and makes directory of spectrograms
- # Useful for making test sets
- # ===================================================================
- if __name__ == "__main__":
- # Get defaults so it can work with no Sacred
- parser = argparse.ArgumentParser()
- parser.add_argument('-f', "--filelist_path", required=True)
- parser.add_argument('-c', '--config', type=str,
- help='JSON file for configuration')
- parser.add_argument('-o', '--output_dir', type=str,
- help='Output directory')
- args = parser.parse_args()
-
- with open(args.config) as f:
- data = f.read()
- config = json.loads(data)
- data_config = config["data_config"]
- squeezewave_config = config["squeezewave_config"]
- mel2samp = Mel2Samp(squeezewave_config['n_audio_channel'], **data_config)
-
- filepaths = files_to_list(args.filelist_path)
-
- # Make directory if it doesn't exist
- if not os.path.isdir(args.output_dir):
- os.makedirs(args.output_dir)
- os.chmod(args.output_dir, 0o775)
-
- for filepath in filepaths:
- audio, sr = load_wav_to_torch(filepath)
- melspectrogram = mel2samp.get_mel(audio)
- filename = os.path.basename(filepath)
- new_filepath = args.output_dir + '/' + filename + '.pt'
- print(new_filepath)
- torch.save(melspectrogram, new_filepath)
|