|
|
- # We retain the copyright notice by NVIDIA from the original code. However, we
- # we reserve our rights on the modifications based on the original code.
- #
- # *****************************************************************************
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are met:
- # * Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # * Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- # * Neither the name of the NVIDIA CORPORATION nor the
- # names of its contributors may be used to endorse or promote products
- # derived from this software without specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
- # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- #
- # *****************************************************************************
- import argparse
- import json
- import os
- import torch
-
- #=====START: ADDED FOR DISTRIBUTED======
- from distributed import init_distributed, apply_gradient_allreduce, reduce_tensor
- from torch.utils.data.distributed import DistributedSampler
- #=====END: ADDED FOR DISTRIBUTED======
-
- from torch.utils.data import DataLoader
- from glow import SqueezeWave, SqueezeWaveLoss
- from mel2samp import Mel2Samp
-
- def load_checkpoint(
- checkpoint_path, model, optimizer, n_flows, n_early_every,
- n_early_size, n_mel_channels, n_audio_channel, WN_config):
-
- assert os.path.isfile(checkpoint_path)
-
- checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
- iteration = checkpoint_dict['iteration']
- #iteration = 1
- optimizer.load_state_dict(checkpoint_dict['optimizer'])
- model_for_loading = checkpoint_dict['model']
- state_dict = model_for_loading.state_dict()
-
- model.load_state_dict(state_dict, strict = False)
- print("Loaded checkpoint '{}' (iteration {})" .format(checkpoint_path, iteration))
-
- return model, optimizer, iteration
-
- def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
- print("Saving model and optimizer state at iteration {} to {}".format(
- iteration, filepath))
- model_for_saving = SqueezeWave(**squeezewave_config).cuda()
- model_for_saving.load_state_dict(model.state_dict())
- torch.save({'model': model_for_saving,
- 'iteration': iteration,
- 'optimizer': optimizer.state_dict(),
- 'learning_rate': learning_rate}, filepath)
-
- def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate,
- sigma, iters_per_checkpoint, batch_size, seed, fp16_run,
- checkpoint_path, with_tensorboard):
- torch.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- #=====START: ADDED FOR DISTRIBUTED======
- if num_gpus > 1:
- init_distributed(rank, num_gpus, group_name, **dist_config)
- #=====END: ADDED FOR DISTRIBUTED======
-
- criterion = SqueezeWaveLoss(sigma)
- model = SqueezeWave(**squeezewave_config).cuda()
- print(model)
- pytorch_total_params = sum(p.numel() for p in model.parameters())
- pytorch_total_params_train = sum(p.numel() for p in model.parameters() if p.requires_grad)
- print("param", pytorch_total_params)
- print("param trainable", pytorch_total_params_train)
-
- #=====START: ADDED FOR DISTRIBUTED======
- if num_gpus > 1:
- model = apply_gradient_allreduce(model)
- #=====END: ADDED FOR DISTRIBUTED======
-
- optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
-
- if fp16_run:
- from apex import amp
- model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
-
- # Load checkpoint if one exists
- iteration = 0
- if checkpoint_path != "":
- model, optimizer, iteration = load_checkpoint(checkpoint_path, model,
- optimizer, **squeezewave_config)
- iteration += 1 # next iteration is iteration + 1
-
- n_audio_channel = squeezewave_config["n_audio_channel"]
- trainset = Mel2Samp(n_audio_channel, **data_config)
- # =====START: ADDED FOR DISTRIBUTED======
- train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None
- # =====END: ADDED FOR DISTRIBUTED======
- train_loader = DataLoader(trainset, num_workers=0, shuffle=False,
- sampler=train_sampler,
- batch_size=batch_size,
- pin_memory=False,
- drop_last=True)
-
- # Get shared output_directory ready
- if rank == 0:
- if not os.path.isdir(output_directory):
- os.makedirs(output_directory)
- os.chmod(output_directory, 0o775)
- print("output directory", output_directory)
-
- if with_tensorboard and rank == 0:
- from tensorboardX import SummaryWriter
- logger = SummaryWriter(os.path.join(output_directory, 'logs'))
-
- model.train()
- epoch_offset = max(0, int(iteration / len(train_loader)))
- # ================ MAIN TRAINNIG LOOP! ===================
- for epoch in range(epoch_offset, epochs):
- print("Epoch: {}".format(epoch))
- for i, batch in enumerate(train_loader):
- model.zero_grad()
-
- mel, audio = batch
- mel = torch.autograd.Variable(mel.cuda())
- audio = torch.autograd.Variable(audio.cuda())
- outputs = model((mel, audio))
-
- loss = criterion(outputs)
- if num_gpus > 1:
- reduced_loss = reduce_tensor(loss.data, num_gpus).item()
- else:
- reduced_loss = loss.item()
-
- if fp16_run:
- with amp.scale_loss(loss, optimizer) as scaled_loss:
- scaled_loss.backward()
- else:
- loss.backward()
-
- optimizer.step()
-
- print("{}:\t{:.9f}\t".format(iteration, reduced_loss))
- if with_tensorboard and rank == 0:
- logger.add_scalar('training_loss', reduced_loss, i + len(train_loader) * epoch)
- if (iteration % iters_per_checkpoint == 0):
- if rank == 0:
- checkpoint_path = "{}/SqueezeWave_{}".format(
- output_directory, iteration)
- save_checkpoint(model, optimizer, learning_rate, iteration,
- checkpoint_path)
-
- iteration += 1
-
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('-c', '--config', type=str,
- help='JSON file for configuration')
- parser.add_argument('-r', '--rank', type=int, default=0,
- help='rank of process for distributed')
- parser.add_argument('-g', '--group_name', type=str, default='',
- help='name of group for distributed')
- args = parser.parse_args()
-
- # Parse configs. Globals nicer in this case
- with open(args.config) as f:
- data = f.read()
- config = json.loads(data)
- train_config = config["train_config"]
- global data_config
- data_config = config["data_config"]
- global dist_config
- dist_config = config["dist_config"]
- global squeezewave_config
- squeezewave_config = config["squeezewave_config"]
-
- num_gpus = torch.cuda.device_count()
- if num_gpus > 1:
- if args.group_name == '':
- print("WARNING: Multiple GPUs detected but no distributed group set")
- print("Only running 1 GPU. Use distributed.py for multiple GPUs")
- num_gpus = 1
-
- if num_gpus == 1 and args.rank != 0:
- raise Exception("Doing single GPU training on rank > 0")
-
- torch.backends.cudnn.enabled = True
- torch.backends.cudnn.benchmark = False
- train(num_gpus, args.rank, args.group_name, **train_config)
|