# We retain the copyright notice by NVIDIA from the original code. However, we # we reserve our rights on the modifications based on the original code. # # ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os from scipy.io.wavfile import write import torch from mel2samp import files_to_list, MAX_WAV_VALUE from denoiser import Denoiser def main(mel_files, squeezewave_path, sigma, output_dir, sampling_rate, is_fp16, denoiser_strength): mel_files = files_to_list(mel_files) squeezewave = torch.load(squeezewave_path)['model'] squeezewave = squeezewave.remove_weightnorm(squeezewave) squeezewave.cuda().eval() if is_fp16: from apex import amp squeezewave, _ = amp.initialize(squeezewave, [], opt_level="O3") if denoiser_strength > 0: denoiser = Denoiser(squeezewave).cuda() for i, file_path in enumerate(mel_files): file_name = os.path.splitext(os.path.basename(file_path))[0] mel = torch.load(file_path) mel = torch.autograd.Variable(mel.cuda()) mel = torch.unsqueeze(mel, 0) mel = mel.half() if is_fp16 else mel with torch.no_grad(): audio = squeezewave.infer(mel, sigma=sigma).float() if denoiser_strength > 0: audio = denoiser(audio, denoiser_strength) audio = audio * MAX_WAV_VALUE audio = audio.squeeze() audio = audio.cpu().numpy() audio = audio.astype('int16') audio_path = os.path.join( output_dir, "{}_synthesis.wav".format(file_name)) write(audio_path, sampling_rate, audio) print(audio_path) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('-f', "--filelist_path", required=True) parser.add_argument('-w', '--squeezewave_path', help='Path to squeezewave decoder checkpoint with model') parser.add_argument('-o', "--output_dir", required=True) parser.add_argument("-s", "--sigma", default=1.0, type=float) parser.add_argument("--sampling_rate", default=22050, type=int) parser.add_argument("--is_fp16", action="store_true") parser.add_argument("-d", "--denoiser_strength", default=0.0, type=float, help='Removes model bias. Start with 0.1 and adjust') args = parser.parse_args() main(args.filelist_path, args.squeezewave_path, args.sigma, args.output_dir, args.sampling_rate, args.is_fp16, args.denoiser_strength)