import numpy as np class ScheduledOptim(): ''' A simple wrapper class for learning rate scheduling ''' def __init__(self, optimizer, d_model, n_warmup_steps, current_steps): self._optimizer = optimizer self.n_warmup_steps = n_warmup_steps self.n_current_steps = current_steps self.init_lr = np.power(d_model, -0.5) def step_and_update_lr_frozen(self, learning_rate_frozen): for param_group in self._optimizer.param_groups: param_group['lr'] = learning_rate_frozen self._optimizer.step() def step_and_update_lr(self): self._update_learning_rate() self._optimizer.step() def get_learning_rate(self): learning_rate = 0.0 for param_group in self._optimizer.param_groups: learning_rate = param_group['lr'] return learning_rate def zero_grad(self): # print(self.init_lr) self._optimizer.zero_grad() def _get_lr_scale(self): return np.min([ np.power(self.n_current_steps, -0.5), np.power(self.n_warmup_steps, -1.5) * self.n_current_steps]) def _update_learning_rate(self): ''' Learning rate scheduling per step ''' self.n_current_steps += 1 lr = self.init_lr * self._get_lr_scale() for param_group in self._optimizer.param_groups: param_group['lr'] = lr