# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # *****************************************************************************\ # from tacotron2.layers import TacotronSTFT import os import random import argparse import json import torch import torch.utils.data import sys from scipy.io.wavfile import read # We're using the audio processing from TacoTron2 to make sure it matches sys.path.insert(0, 'tacotron2') MAX_WAV_VALUE = 32768.0 def files_to_list(filename): """ Takes a text file of filenames and makes a list of filenames """ with open(filename, encoding='utf-8') as f: files = f.readlines() files = [f.rstrip() for f in files] return files # def load_wav_to_torch(full_path): # """ # Loads wavdata into torch array # """ # sampling_rate, data = read(full_path) # return torch.from_numpy(data).float(), sampling_rate # class Mel2Samp(torch.utils.data.Dataset): # """ # This is the main class that calculates the spectrogram and returns the # spectrogram, audio pair. # """ # def __init__(self, training_files, segment_length, filter_length, # hop_length, win_length, sampling_rate, mel_fmin, mel_fmax): # self.audio_files = files_to_list(training_files) # random.seed(1234) # random.shuffle(self.audio_files) # self.stft = TacotronSTFT(filter_length=filter_length, # hop_length=hop_length, # win_length=win_length, # sampling_rate=sampling_rate, # mel_fmin=mel_fmin, mel_fmax=mel_fmax) # self.segment_length = segment_length # self.sampling_rate = sampling_rate # def get_mel(self, audio): # audio_norm = audio / MAX_WAV_VALUE # audio_norm = audio_norm.unsqueeze(0) # audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) # melspec = self.stft.mel_spectrogram(audio_norm) # melspec = torch.squeeze(melspec, 0) # return melspec # def __getitem__(self, index): # # Read audio # filename = self.audio_files[index] # audio, sampling_rate = load_wav_to_torch(filename) # if sampling_rate != self.sampling_rate: # raise ValueError("{} SR doesn't match target {} SR".format( # sampling_rate, self.sampling_rate)) # # Take segment # if audio.size(0) >= self.segment_length: # max_audio_start = audio.size(0) - self.segment_length # audio_start = random.randint(0, max_audio_start) # audio = audio[audio_start:audio_start+self.segment_length] # else: # audio = torch.nn.functional.pad( # audio, (0, self.segment_length - audio.size(0)), 'constant').data # mel = self.get_mel(audio) # audio = audio / MAX_WAV_VALUE # return (mel, audio) # def __len__(self): # return len(self.audio_files) # # =================================================================== # # Takes directory of clean audio and makes directory of spectrograms # # Useful for making test sets # # =================================================================== # if __name__ == "__main__": # # Get defaults so it can work with no Sacred # parser = argparse.ArgumentParser() # parser.add_argument('-f', "--filelist_path", required=True) # parser.add_argument('-c', '--config', type=str, # help='JSON file for configuration') # parser.add_argument('-o', '--output_dir', type=str, # help='Output directory') # args = parser.parse_args() # with open(args.config) as f: # data = f.read() # data_config = json.loads(data)["data_config"] # mel2samp = Mel2Samp(**data_config) # filepaths = files_to_list(args.filelist_path) # # Make directory if it doesn't exist # if not os.path.isdir(args.output_dir): # os.makedirs(args.output_dir) # os.chmod(args.output_dir, 0o775) # for filepath in filepaths: # audio, sr = load_wav_to_torch(filepath) # melspectrogram = mel2samp.get_mel(audio) # filename = os.path.basename(filepath) # new_filepath = args.output_dir + '/' + filename + '.pt' # print(new_filepath) # torch.save(melspectrogram, new_filepath)