from text import symbols # Text text_cleaners = ['english_cleaners'] # Mel n_mel_channels = 80 num_mels = 80 # FastSpeech vocab_size = 1024 N = 6 Head = 2 d_model = 384 duration_predictor_filter_size = 256 duration_predictor_kernel_size = 3 dropout = 0.1 word_vec_dim = 384 encoder_n_layer = 6 encoder_head = 2 encoder_conv1d_filter_size = 1536 max_sep_len = 2048 encoder_output_size = 384 decoder_n_layer = 6 decoder_head = 2 decoder_conv1d_filter_size = 1536 decoder_output_size = 384 fft_conv1d_kernel = 3 fft_conv1d_padding = 1 duration_predictor_filter_size = 256 duration_predictor_kernel_size = 3 dropout = 0.1 # Train alignment_path = "./alignments" checkpoint_path = "./model_new" logger_path = "./logger" mel_ground_truth = "./mels" batch_size = 64 epochs = 1000 n_warm_up_step = 4000 learning_rate = 1e-3 weight_decay = 1e-6 grad_clip_thresh = 1.0 decay_step = [500000, 1000000, 2000000] save_step = 1000 log_step = 5 clear_Time = 20