from text import symbols class Hparams: """ hyper parameters """ def __init__(self): ################################ # Experiment Parameters # ################################ self.epochs = 500 self.iters_per_checkpoint = 1000 self.seed = 1234 self.dynamic_loss_scaling = True self.fp16_run = False self.distributed_run = False self.dist_backend = "nccl" self.dist_url = "tcp://localhost:54321" self.cudnn_enabled = True self.cudnn_benchmark = False self.ignore_layers = ['embedding.weight'] ################################ # Data Parameters # ################################ self.load_mel_from_disk = False self.training_files = 'filelists/ljs_audio_text_train_filelist.txt' self.validation_files = 'filelists/ljs_audio_text_val_filelist.txt' self.text_cleaners = ['english_cleaners'] ################################ # Audio Parameters # ################################ self.max_wav_value = 32768.0 self.sampling_rate = 22050 self.filter_length = 1024 self.hop_length = 256 self.win_length = 1024 self.n_mel_channels = 80 self.mel_fmin = 0.0 self.mel_fmax = 8000.0 ################################ # Model Parameters # ################################ self.n_symbols = len(symbols) self.symbols_embedding_dim = 512 # Encoder parameters self.encoder_kernel_size = 5 self.encoder_n_convolutions = 3 self.encoder_embedding_dim = 512 # Decoder parameters self.n_frames_per_step = 1 # currently only 1 is supported self.decoder_rnn_dim = 1024 self.prenet_dim = 256 self.max_decoder_steps = 1000 self.gate_threshold = 0.5 self.p_attention_dropout = 0.1 self.p_decoder_dropout = 0.1 # Attention parameters self.attention_rnn_dim = 1024 self.attention_dim = 128 # Location Layer parameters self.attention_location_n_filters = 32 self.attention_location_kernel_size = 31 # Mel-post processing network parameters self.postnet_embedding_dim = 512 self.postnet_kernel_size = 5 self.postnet_n_convolutions = 5 ################################ # Optimization Hyperparameters # ################################ self.use_saved_learning_rate = False self.learning_rate = 1e-3 self.weight_decay = 1e-6 self.grad_clip_thresh = 1.0 self.batch_size = 64 self.mask_padding = True # set model's padded outputs to padded values def return_self(self): return self def create_hparams(): hparams = Hparams() return hparams.return_self()