import torch import numpy as np import transformer.Constants as Constants class Beam(): ''' Beam search ''' def __init__(self, size, device=False): self.size = size self._done = False # The score for each translation on the beam. self.scores = torch.zeros((size,), dtype=torch.float, device=device) self.all_scores = [] # The backpointers at each time-step. self.prev_ks = [] # The outputs at each time-step. self.next_ys = [torch.full( (size,), Constants.PAD, dtype=torch.long, device=device)] self.next_ys[0][0] = Constants.BOS def get_current_state(self): "Get the outputs for the current timestep." return self.get_tentative_hypothesis() def get_current_origin(self): "Get the backpointers for the current timestep." return self.prev_ks[-1] @property def done(self): return self._done def advance(self, word_prob): "Update beam status and check if finished or not." num_words = word_prob.size(1) # Sum the previous scores. if len(self.prev_ks) > 0: beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob) else: beam_lk = word_prob[0] flat_beam_lk = beam_lk.view(-1) best_scores, best_scores_id = flat_beam_lk.topk( self.size, 0, True, True) # 1st sort best_scores, best_scores_id = flat_beam_lk.topk( self.size, 0, True, True) # 2nd sort self.all_scores.append(self.scores) self.scores = best_scores # bestScoresId is flattened as a (beam x word) array, # so we need to calculate which word and beam each score came from prev_k = best_scores_id / num_words self.prev_ks.append(prev_k) self.next_ys.append(best_scores_id - prev_k * num_words) # End condition is when top-of-beam is EOS. if self.next_ys[-1][0].item() == Constants.EOS: self._done = True self.all_scores.append(self.scores) return self._done def sort_scores(self): "Sort the scores." return torch.sort(self.scores, 0, True) def get_the_best_score_and_idx(self): "Get the score of the best in the beam." scores, ids = self.sort_scores() return scores[1], ids[1] def get_tentative_hypothesis(self): "Get the decoded sequence for the current timestep." if len(self.next_ys) == 1: dec_seq = self.next_ys[0].unsqueeze(1) else: _, keys = self.sort_scores() hyps = [self.get_hypothesis(k) for k in keys] hyps = [[Constants.BOS] + h for h in hyps] dec_seq = torch.LongTensor(hyps) return dec_seq def get_hypothesis(self, k): """ Walk back to construct the full hypothesis. """ hyp = [] for j in range(len(self.prev_ks) - 1, -1, -1): hyp.append(self.next_ys[j+1][k]) k = self.prev_ks[j][k] return list(map(lambda x: x.item(), hyp[::-1]))