import torch
|
|
import torch.nn.functional as F
|
|
from torch.autograd import Variable
|
|
import numpy as np
|
|
|
|
from scipy.signal import get_window
|
|
from librosa.util import pad_center, tiny
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
|
|
from audio.audio_processing import dynamic_range_compression
|
|
from audio.audio_processing import dynamic_range_decompression
|
|
from audio.audio_processing import window_sumsquare
|
|
|
|
|
|
class STFT(torch.nn.Module):
|
|
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
|
|
|
|
def __init__(self, filter_length=800, hop_length=200, win_length=800,
|
|
window='hann'):
|
|
super(STFT, self).__init__()
|
|
self.filter_length = filter_length
|
|
self.hop_length = hop_length
|
|
self.win_length = win_length
|
|
self.window = window
|
|
self.forward_transform = None
|
|
scale = self.filter_length / self.hop_length
|
|
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
|
|
|
cutoff = int((self.filter_length / 2 + 1))
|
|
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
|
|
np.imag(fourier_basis[:cutoff, :])])
|
|
|
|
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
|
inverse_basis = torch.FloatTensor(
|
|
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
|
|
|
|
if window is not None:
|
|
assert(filter_length >= win_length)
|
|
# get window and zero center pad it to filter_length
|
|
fft_window = get_window(window, win_length, fftbins=True)
|
|
fft_window = pad_center(fft_window, filter_length)
|
|
fft_window = torch.from_numpy(fft_window).float()
|
|
|
|
# window the bases
|
|
forward_basis *= fft_window
|
|
inverse_basis *= fft_window
|
|
|
|
self.register_buffer('forward_basis', forward_basis.float())
|
|
self.register_buffer('inverse_basis', inverse_basis.float())
|
|
|
|
def transform(self, input_data):
|
|
num_batches = input_data.size(0)
|
|
num_samples = input_data.size(1)
|
|
|
|
self.num_samples = num_samples
|
|
|
|
# similar to librosa, reflect-pad the input
|
|
input_data = input_data.view(num_batches, 1, num_samples)
|
|
input_data = F.pad(
|
|
input_data.unsqueeze(1),
|
|
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
|
|
mode='reflect')
|
|
input_data = input_data.squeeze(1)
|
|
|
|
forward_transform = F.conv1d(
|
|
input_data.cuda(),
|
|
Variable(self.forward_basis, requires_grad=False).cuda(),
|
|
stride=self.hop_length,
|
|
padding=0).cpu()
|
|
|
|
cutoff = int((self.filter_length / 2) + 1)
|
|
real_part = forward_transform[:, :cutoff, :]
|
|
imag_part = forward_transform[:, cutoff:, :]
|
|
|
|
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
|
phase = torch.autograd.Variable(
|
|
torch.atan2(imag_part.data, real_part.data))
|
|
|
|
return magnitude, phase
|
|
|
|
def inverse(self, magnitude, phase):
|
|
recombine_magnitude_phase = torch.cat(
|
|
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
|
|
|
|
inverse_transform = F.conv_transpose1d(
|
|
recombine_magnitude_phase,
|
|
Variable(self.inverse_basis, requires_grad=False),
|
|
stride=self.hop_length,
|
|
padding=0)
|
|
|
|
if self.window is not None:
|
|
window_sum = window_sumsquare(
|
|
self.window, magnitude.size(-1), hop_length=self.hop_length,
|
|
win_length=self.win_length, n_fft=self.filter_length,
|
|
dtype=np.float32)
|
|
# remove modulation effects
|
|
approx_nonzero_indices = torch.from_numpy(
|
|
np.where(window_sum > tiny(window_sum))[0])
|
|
window_sum = torch.autograd.Variable(
|
|
torch.from_numpy(window_sum), requires_grad=False)
|
|
window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
|
|
inverse_transform[:, :,
|
|
approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
|
|
|
|
# scale by hop ratio
|
|
inverse_transform *= float(self.filter_length) / self.hop_length
|
|
|
|
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
|
|
inverse_transform = inverse_transform[:,
|
|
:, :-int(self.filter_length/2):]
|
|
|
|
return inverse_transform
|
|
|
|
def forward(self, input_data):
|
|
self.magnitude, self.phase = self.transform(input_data)
|
|
reconstruction = self.inverse(self.magnitude, self.phase)
|
|
return reconstruction
|
|
|
|
|
|
class TacotronSTFT(torch.nn.Module):
|
|
def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
|
|
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
|
|
mel_fmax=8000.0):
|
|
super(TacotronSTFT, self).__init__()
|
|
self.n_mel_channels = n_mel_channels
|
|
self.sampling_rate = sampling_rate
|
|
self.stft_fn = STFT(filter_length, hop_length, win_length)
|
|
mel_basis = librosa_mel_fn(
|
|
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax)
|
|
mel_basis = torch.from_numpy(mel_basis).float()
|
|
self.register_buffer('mel_basis', mel_basis)
|
|
|
|
def spectral_normalize(self, magnitudes):
|
|
output = dynamic_range_compression(magnitudes)
|
|
return output
|
|
|
|
def spectral_de_normalize(self, magnitudes):
|
|
output = dynamic_range_decompression(magnitudes)
|
|
return output
|
|
|
|
def mel_spectrogram(self, y):
|
|
"""Computes mel-spectrograms from a batch of waves
|
|
PARAMS
|
|
------
|
|
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
|
|
|
|
RETURNS
|
|
-------
|
|
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
|
|
"""
|
|
assert(torch.min(y.data) >= -1)
|
|
assert(torch.max(y.data) <= 1)
|
|
|
|
magnitudes, phases = self.stft_fn.transform(y)
|
|
magnitudes = magnitudes.data
|
|
mel_output = torch.matmul(self.mel_basis, magnitudes)
|
|
mel_output = self.spectral_normalize(mel_output)
|
|
return mel_output
|