from text import symbols
|
|
|
|
|
|
class Hparams:
|
|
""" hyper parameters """
|
|
|
|
def __init__(self):
|
|
################################
|
|
# Experiment Parameters #
|
|
################################
|
|
self.epochs = 500
|
|
self.iters_per_checkpoint = 1000
|
|
self.seed = 1234
|
|
self.dynamic_loss_scaling = True
|
|
self.fp16_run = False
|
|
self.distributed_run = False
|
|
self.dist_backend = "nccl"
|
|
self.dist_url = "tcp://localhost:54321"
|
|
self.cudnn_enabled = True
|
|
self.cudnn_benchmark = False
|
|
self.ignore_layers = ['embedding.weight']
|
|
|
|
################################
|
|
# Data Parameters #
|
|
################################
|
|
self.load_mel_from_disk = False
|
|
self.training_files = 'filelists/ljs_audio_text_train_filelist.txt'
|
|
self.validation_files = 'filelists/ljs_audio_text_val_filelist.txt'
|
|
self.text_cleaners = ['english_cleaners']
|
|
|
|
################################
|
|
# Audio Parameters #
|
|
################################
|
|
self.max_wav_value = 32768.0
|
|
self.sampling_rate = 22050
|
|
self.filter_length = 1024
|
|
self.hop_length = 256
|
|
self.win_length = 1024
|
|
self.n_mel_channels = 80
|
|
self.mel_fmin = 0.0
|
|
self.mel_fmax = 8000.0
|
|
|
|
################################
|
|
# Model Parameters #
|
|
################################
|
|
self.n_symbols = len(symbols)
|
|
self.symbols_embedding_dim = 512
|
|
|
|
# Encoder parameters
|
|
self.encoder_kernel_size = 5
|
|
self.encoder_n_convolutions = 3
|
|
self.encoder_embedding_dim = 512
|
|
|
|
# Decoder parameters
|
|
self.n_frames_per_step = 1 # currently only 1 is supported
|
|
self.decoder_rnn_dim = 1024
|
|
self.prenet_dim = 256
|
|
self.max_decoder_steps = 1000
|
|
self.gate_threshold = 0.5
|
|
self.p_attention_dropout = 0.1
|
|
self.p_decoder_dropout = 0.1
|
|
|
|
# Attention parameters
|
|
self.attention_rnn_dim = 1024
|
|
self.attention_dim = 128
|
|
|
|
# Location Layer parameters
|
|
self.attention_location_n_filters = 32
|
|
self.attention_location_kernel_size = 31
|
|
|
|
# Mel-post processing network parameters
|
|
self.postnet_embedding_dim = 512
|
|
self.postnet_kernel_size = 5
|
|
self.postnet_n_convolutions = 5
|
|
|
|
################################
|
|
# Optimization Hyperparameters #
|
|
################################
|
|
self.use_saved_learning_rate = False
|
|
self.learning_rate = 1e-3
|
|
self.weight_decay = 1e-6
|
|
self.grad_clip_thresh = 1.0
|
|
self.batch_size = 64
|
|
self.mask_padding = True # set model's padded outputs to padded values
|
|
|
|
def return_self(self):
|
|
return self
|
|
|
|
|
|
def create_hparams():
|
|
hparams = Hparams()
|
|
return hparams.return_self()
|