# We retain the copyright notice by NVIDIA from the original code. However, we
|
|
# we reserve our rights on the modifications based on the original code.
|
|
#
|
|
# *****************************************************************************
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
# * Redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer.
|
|
# * Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution.
|
|
# * Neither the name of the NVIDIA CORPORATION nor the
|
|
# names of its contributors may be used to endorse or promote products
|
|
# derived from this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
|
|
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
# *****************************************************************************
|
|
import torch
|
|
from torch.autograd import Variable
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
|
|
|
|
@torch.jit.script
|
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
|
n_channels_int = n_channels[0]
|
|
in_act = input_a+input_b
|
|
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
|
acts = t_act * s_act
|
|
return acts
|
|
|
|
|
|
class Upsample1d(torch.nn.Module):
|
|
def __init__(self, scale=2):
|
|
super(Upsample1d, self).__init__()
|
|
self.scale = scale
|
|
|
|
def forward(self, x):
|
|
y = F.interpolate(
|
|
x, scale_factor=self.scale, mode='nearest')
|
|
return y
|
|
|
|
|
|
class SqueezeWaveLoss(torch.nn.Module):
|
|
def __init__(self, sigma=1.0):
|
|
super(SqueezeWaveLoss, self).__init__()
|
|
self.sigma = sigma
|
|
|
|
def forward(self, model_output):
|
|
z, log_s_list, log_det_W_list = model_output
|
|
for i, log_s in enumerate(log_s_list):
|
|
if i == 0:
|
|
log_s_total = torch.sum(log_s)
|
|
log_det_W_total = log_det_W_list[i]
|
|
else:
|
|
log_s_total = log_s_total + torch.sum(log_s)
|
|
log_det_W_total += log_det_W_list[i]
|
|
|
|
loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total
|
|
return loss/(z.size(0)*z.size(1)*z.size(2))
|
|
|
|
|
|
class Invertible1x1Conv(torch.nn.Module):
|
|
"""
|
|
The layer outputs both the convolution, and the log determinant
|
|
of its weight matrix. If reverse=True it does convolution with
|
|
inverse
|
|
"""
|
|
def __init__(self, c):
|
|
super(Invertible1x1Conv, self).__init__()
|
|
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
|
|
bias=False)
|
|
|
|
# Sample a random orthonormal matrix to initialize weights
|
|
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
|
|
|
|
# Ensure determinant is 1.0 not -1.0
|
|
if torch.det(W) < 0:
|
|
W[:,0] = -1*W[:,0]
|
|
W = W.view(c, c, 1)
|
|
self.conv.weight.data = W
|
|
|
|
def forward(self, z, reverse=False):
|
|
# shape
|
|
batch_size, group_size, n_of_groups = z.size()
|
|
W = self.conv.weight.squeeze()
|
|
|
|
if reverse:
|
|
if not hasattr(self, 'W_inverse'):
|
|
# Reverse computation
|
|
W_inverse = W.float().inverse()
|
|
W_inverse = Variable(W_inverse[..., None])
|
|
self.W_inverse = W_inverse.half()
|
|
self.W_inverse = self.W_inverse.to(torch.float32)
|
|
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
|
|
return z
|
|
else:
|
|
# Forward computation
|
|
log_det_W = batch_size * n_of_groups * torch.logdet(W)
|
|
z = self.conv(z)
|
|
return z, log_det_W
|
|
|
|
|
|
class WN(torch.nn.Module):
|
|
"""
|
|
This is the WaveNet like layer for the affine coupling. The primary difference
|
|
from WaveNet is the convolutions need not be causal. There is also no dilation
|
|
size reset. The dilation only doubles on each layer
|
|
"""
|
|
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
|
|
kernel_size):
|
|
super(WN, self).__init__()
|
|
assert(kernel_size % 2 == 1)
|
|
assert(n_channels % 2 == 0)
|
|
self.n_layers = n_layers
|
|
self.n_channels = n_channels
|
|
self.in_layers = torch.nn.ModuleList()
|
|
self.res_skip_layers = torch.nn.ModuleList()
|
|
self.upsample = Upsample1d(2)
|
|
start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
|
|
start = torch.nn.utils.weight_norm(start, name='weight')
|
|
self.start = start
|
|
end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1)
|
|
end.weight.data.zero_()
|
|
end.bias.data.zero_()
|
|
self.end = end
|
|
|
|
# cond_layer
|
|
cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1)
|
|
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
|
for i in range(n_layers):
|
|
dilation = 1
|
|
padding = int((kernel_size*dilation - dilation)/2)
|
|
# depthwise separable convolution
|
|
depthwise = torch.nn.Conv1d(n_channels, n_channels, 3,
|
|
dilation=dilation, padding=padding,
|
|
groups=n_channels)
|
|
pointwise = torch.nn.Conv1d(n_channels, 2*n_channels, 1)
|
|
bn = torch.nn.BatchNorm1d(n_channels)
|
|
self.in_layers.append(torch.nn.Sequential(bn, depthwise, pointwise))
|
|
# res_skip_layer
|
|
res_skip_layer = torch.nn.Conv1d(n_channels, n_channels, 1)
|
|
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
|
self.res_skip_layers.append(res_skip_layer)
|
|
|
|
def forward(self, forward_input):
|
|
audio, spect = forward_input
|
|
audio = self.start(audio)
|
|
n_channels_tensor = torch.IntTensor([self.n_channels])
|
|
# pass all the mel_spectrograms to cond_layer
|
|
spect = self.cond_layer(spect)
|
|
for i in range(self.n_layers):
|
|
# split the corresponding mel_spectrogram
|
|
spect_offset = i*2*self.n_channels
|
|
spec = spect[:,spect_offset:spect_offset+2*self.n_channels,:]
|
|
if audio.size(2) > spec.size(2):
|
|
cond = self.upsample(spec)
|
|
else:
|
|
cond = spec
|
|
acts = fused_add_tanh_sigmoid_multiply(
|
|
self.in_layers[i](audio),
|
|
cond,
|
|
n_channels_tensor)
|
|
# res_skip
|
|
res_skip_acts = self.res_skip_layers[i](acts)
|
|
audio = audio + res_skip_acts
|
|
return self.end(audio)
|
|
|
|
|
|
class SqueezeWave(torch.nn.Module):
|
|
def __init__(self, n_mel_channels, n_flows, n_audio_channel, n_early_every,
|
|
n_early_size, WN_config):
|
|
super(SqueezeWave, self).__init__()
|
|
assert(n_audio_channel % 2 == 0)
|
|
self.n_flows = n_flows
|
|
self.n_audio_channel = n_audio_channel
|
|
self.n_early_every = n_early_every
|
|
self.n_early_size = n_early_size
|
|
self.WN = torch.nn.ModuleList()
|
|
self.convinv = torch.nn.ModuleList()
|
|
|
|
n_half = int(n_audio_channel / 2)
|
|
# Set up layers with the right sizes based on how many dimensions
|
|
# have been output already
|
|
n_remaining_channels = n_audio_channel
|
|
for k in range(n_flows):
|
|
if k % self.n_early_every == 0 and k > 0:
|
|
n_half = n_half - int(self.n_early_size/2)
|
|
n_remaining_channels = n_remaining_channels - self.n_early_size
|
|
self.convinv.append(Invertible1x1Conv(n_remaining_channels))
|
|
self.WN.append(WN(n_half, n_mel_channels, **WN_config))
|
|
|
|
self.n_remaining_channels = n_remaining_channels # Useful during inference
|
|
|
|
def forward(self, forward_input):
|
|
"""
|
|
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames
|
|
forward_input[1] = audio: batch x time
|
|
"""
|
|
spect, audio = forward_input
|
|
|
|
audio = audio.unfold(
|
|
1, self.n_audio_channel, self.n_audio_channel).permute(0, 2, 1)
|
|
output_audio = []
|
|
log_s_list = []
|
|
log_det_W_list = []
|
|
|
|
for k in range(self.n_flows):
|
|
if k % self.n_early_every == 0 and k > 0:
|
|
output_audio.append(audio[:,:self.n_early_size,:])
|
|
audio = audio[:,self.n_early_size:,:]
|
|
|
|
audio, log_det_W = self.convinv[k](audio)
|
|
log_det_W_list.append(log_det_W)
|
|
|
|
n_half = int(audio.size(1)/2)
|
|
audio_0 = audio[:,:n_half,:]
|
|
audio_1 = audio[:,n_half:,:]
|
|
|
|
output = self.WN[k]((audio_0, spect))
|
|
log_s = output[:, n_half:, :]
|
|
b = output[:, :n_half, :]
|
|
|
|
audio_1 = (torch.exp(log_s))*audio_1 + b
|
|
log_s_list.append(log_s)
|
|
audio = torch.cat([audio_0, audio_1], 1)
|
|
|
|
output_audio.append(audio)
|
|
return torch.cat(output_audio, 1), log_s_list, log_det_W_list
|
|
|
|
def infer(self, spect, sigma=1.0):
|
|
spect_size = spect.size()
|
|
l = spect.size(2)*(256 // self.n_audio_channel)
|
|
|
|
spect = spect.to(torch.float32)
|
|
if spect.type() == 'torch.HalfTensor':
|
|
audio = torch.HalfTensor(spect.size(0),
|
|
self.n_remaining_channels,
|
|
l).normal_()
|
|
else:
|
|
audio = torch.FloatTensor(spect.size(0),
|
|
self.n_remaining_channels,
|
|
l).normal_()
|
|
|
|
for k in reversed(range(self.n_flows)):
|
|
n_half = int(audio.size(1)/2)
|
|
audio_0 = audio[:,:n_half,:]
|
|
audio_1 = audio[:,n_half:,:]
|
|
output = self.WN[k]((audio_0, spect))
|
|
|
|
s = output[:, n_half:, :]
|
|
b = output[:, :n_half, :]
|
|
audio_1 = (audio_1 - b)/torch.exp(s)
|
|
audio = torch.cat([audio_0, audio_1],1)
|
|
|
|
audio = self.convinv[k](audio, reverse=True)
|
|
|
|
if k % self.n_early_every == 0 and k > 0:
|
|
if spect.type() == 'torch.HalfTensor':
|
|
z = torch.HalfTensor(spect.size(0), self.n_early_size, l).normal_()
|
|
else:
|
|
z = torch.FloatTensor(spect.size(0), self.n_early_size, l).normal_()
|
|
audio = torch.cat((sigma*z, audio),1)
|
|
|
|
audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data
|
|
return audio
|
|
|
|
|
|
@staticmethod
|
|
def remove_weightnorm(model):
|
|
squeezewave = model
|
|
for WN in squeezewave.WN:
|
|
WN.start = torch.nn.utils.remove_weight_norm(WN.start)
|
|
WN.in_layers = remove_batch_norm(WN.in_layers)
|
|
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer)
|
|
WN.res_skip_layers = remove(WN.res_skip_layers)
|
|
return squeezewave
|
|
|
|
def fuse_conv_and_bn(conv, bn):
|
|
fusedconv = torch.nn.Conv1d(
|
|
conv.in_channels,
|
|
conv.out_channels,
|
|
kernel_size = conv.kernel_size,
|
|
padding=conv.padding,
|
|
bias=True,
|
|
groups=conv.groups)
|
|
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps+bn.running_var)))
|
|
w_bn = w_bn.clone()
|
|
fusedconv.weight.data = torch.mm(w_bn, w_conv).view(fusedconv.weight.size())
|
|
if conv.bias is not None:
|
|
b_conv = conv.bias
|
|
else:
|
|
b_conv = torch.zeros( conv.weight.size(0) )
|
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
|
b_bn = torch.unsqueeze(b_bn, 1)
|
|
bn_3 = b_bn.expand(-1, 3)
|
|
b = torch.matmul(w_conv, torch.transpose(bn_3, 0, 1))[range(b_bn.size()[0]), range(b_bn.size()[0])]
|
|
fusedconv.bias.data = ( b_conv + b )
|
|
return fusedconv
|
|
|
|
def remove_batch_norm(conv_list):
|
|
new_conv_list = torch.nn.ModuleList()
|
|
for old_conv in conv_list:
|
|
depthwise = fuse_conv_and_bn(old_conv[1], old_conv[0])
|
|
pointwise = old_conv[2]
|
|
new_conv_list.append(torch.nn.Sequential(depthwise, pointwise))
|
|
return new_conv_list
|
|
|
|
def remove(conv_list):
|
|
new_conv_list = torch.nn.ModuleList()
|
|
for old_conv in conv_list:
|
|
old_conv = torch.nn.utils.remove_weight_norm(old_conv)
|
|
new_conv_list.append(old_conv)
|
|
return new_conv_list
|
|
|