Fork of https://github.com/alokprasad/fastspeech_squeezewave to also fix denoising in squeezewave
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

93 lines
2.8 KiB

import torch
import torch.nn as nn
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import time
import os
from fastspeech import FastSpeech
from text import text_to_sequence
import hparams as hp
import utils
import audio as Audio
import glow
import waveglow
import time
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_FastSpeech(num):
checkpoint_path = "checkpoint_" + str(num) + ".pth.tar"
model = nn.DataParallel(FastSpeech()).to(device)
model.load_state_dict(torch.load(os.path.join(
hp.checkpoint_path, checkpoint_path),map_location=device)['model'])
model.eval()
return model
def synthesis(model, text, alpha=1.0):
text = np.array(text_to_sequence(text, hp.text_cleaners))
text = np.stack([text])
src_pos = np.array([i+1 for i in range(text.shape[1])])
src_pos = np.stack([src_pos])
with torch.no_grad():
sequence = torch.autograd.Variable(
torch.from_numpy(text)).long()
src_pos = torch.autograd.Variable(
torch.from_numpy(src_pos)).long()
mel, mel_postnet = model.module.forward(sequence, src_pos, alpha=alpha)
#script for generating torch script
#traced_script_module = torch.jit.trace(model,(sequence,src_pos))
#traced_script_module.save("traced_fastspeech_model.pt")
return mel[0].cpu().transpose(0, 1), \
mel_postnet[0].cpu().transpose(0, 1), \
mel.transpose(1, 2), \
mel_postnet.transpose(1, 2)
if __name__ == "__main__":
# Test
num = 112000
alpha = 1.0
model = get_FastSpeech(num)
words = "Let’s go out to the airport. The plane landed ten minutes ago."
start = time.time()
mel, mel_postnet, mel_torch, mel_postnet_torch = synthesis(
model, words, alpha=alpha)
if not os.path.exists("results"):
os.mkdir("results")
#do not use any vocoder , mel file generated will be passed to squeezewave vocoder.
"""
Audio.tools.inv_mel_spec(mel_postnet, os.path.join(
"results", words + "_" + str(num) + "_griffin_lim.wav"))
wave_glow = utils.get_WaveGlow()
waveglow.inference.inference(mel_postnet_torch, wave_glow, os.path.join(
"results", words + "_" + str(num) + "_waveglow.wav"))
tacotron2 = utils.get_Tacotron2()
mel_tac2, _, _ = utils.load_data_from_tacotron2(words, tacotron2)
waveglow.inference.inference(torch.stack([torch.from_numpy(
mel_tac2).cuda()]), wave_glow, os.path.join("results", "tacotron2.wav"))
utils.plot_data([mel.numpy(), mel_postnet.numpy(), mel_tac2])
"""
#melspec = torch.squeeze(mel_postnet_torch, 0)
torch.save(mel_postnet_torch, "../SqueezeWave/mel_spectrograms/test.pt")
end = time.time()
print("MEL Calculation:")
print(end-start)