Fork of https://github.com/alokprasad/fastspeech_squeezewave to also fix denoising in squeezewave
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

332 lines
13 KiB

# We retain the copyright notice by NVIDIA from the original code. However, we
# we reserve our rights on the modifications based on the original code.
#
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a+input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
class Upsample1d(torch.nn.Module):
def __init__(self, scale=2):
super(Upsample1d, self).__init__()
self.scale = scale
def forward(self, x):
y = F.interpolate(
x, scale_factor=self.scale, mode='nearest')
return y
class SqueezeWaveLoss(torch.nn.Module):
def __init__(self, sigma=1.0):
super(SqueezeWaveLoss, self).__init__()
self.sigma = sigma
def forward(self, model_output):
z, log_s_list, log_det_W_list = model_output
for i, log_s in enumerate(log_s_list):
if i == 0:
log_s_total = torch.sum(log_s)
log_det_W_total = log_det_W_list[i]
else:
log_s_total = log_s_total + torch.sum(log_s)
log_det_W_total += log_det_W_list[i]
loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total
return loss/(z.size(0)*z.size(1)*z.size(2))
class Invertible1x1Conv(torch.nn.Module):
"""
The layer outputs both the convolution, and the log determinant
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0,
bias=False)
# Sample a random orthonormal matrix to initialize weights
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:,0] = -1*W[:,0]
W = W.view(c, c, 1)
self.conv.weight.data = W
def forward(self, z, reverse=False):
# shape
batch_size, group_size, n_of_groups = z.size()
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, 'W_inverse'):
# Reverse computation
W_inverse = W.float().inverse()
W_inverse = Variable(W_inverse[..., None])
self.W_inverse = W_inverse.half()
self.W_inverse = self.W_inverse.to(torch.float32)
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
return z
else:
# Forward computation
log_det_W = batch_size * n_of_groups * torch.logdet(W)
z = self.conv(z)
return z, log_det_W
class WN(torch.nn.Module):
"""
This is the WaveNet like layer for the affine coupling. The primary difference
from WaveNet is the convolutions need not be causal. There is also no dilation
size reset. The dilation only doubles on each layer
"""
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels,
kernel_size):
super(WN, self).__init__()
assert(kernel_size % 2 == 1)
assert(n_channels % 2 == 0)
self.n_layers = n_layers
self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.upsample = Upsample1d(2)
start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name='weight')
self.start = start
end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
# cond_layer
cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
for i in range(n_layers):
dilation = 1
padding = int((kernel_size*dilation - dilation)/2)
# depthwise separable convolution
depthwise = torch.nn.Conv1d(n_channels, n_channels, 3,
dilation=dilation, padding=padding,
groups=n_channels)
pointwise = torch.nn.Conv1d(n_channels, 2*n_channels, 1)
bn = torch.nn.BatchNorm1d(n_channels)
self.in_layers.append(torch.nn.Sequential(bn, depthwise, pointwise))
# res_skip_layer
res_skip_layer = torch.nn.Conv1d(n_channels, n_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input):
audio, spect = forward_input
audio = self.start(audio)
n_channels_tensor = torch.IntTensor([self.n_channels])
# pass all the mel_spectrograms to cond_layer
spect = self.cond_layer(spect)
for i in range(self.n_layers):
# split the corresponding mel_spectrogram
spect_offset = i*2*self.n_channels
spec = spect[:,spect_offset:spect_offset+2*self.n_channels,:]
if audio.size(2) > spec.size(2):
cond = self.upsample(spec)
else:
cond = spec
acts = fused_add_tanh_sigmoid_multiply(
self.in_layers[i](audio),
cond,
n_channels_tensor)
# res_skip
res_skip_acts = self.res_skip_layers[i](acts)
audio = audio + res_skip_acts
return self.end(audio)
class SqueezeWave(torch.nn.Module):
def __init__(self, n_mel_channels, n_flows, n_audio_channel, n_early_every,
n_early_size, WN_config):
super(SqueezeWave, self).__init__()
assert(n_audio_channel % 2 == 0)
self.upsample = torch.nn.ConvTranspose1d(n_mel_channels,
n_mel_channels,
1024, stride=256)
self.n_flows = n_flows
self.n_audio_channel = n_audio_channel
self.n_early_every = n_early_every
self.n_early_size = n_early_size
self.WN = torch.nn.ModuleList()
self.convinv = torch.nn.ModuleList()
n_half = int(n_audio_channel / 2)
# Set up layers with the right sizes based on how many dimensions
# have been output already
n_remaining_channels = n_audio_channel
for k in range(n_flows):
if k % self.n_early_every == 0 and k > 0:
n_half = n_half - int(self.n_early_size/2)
n_remaining_channels = n_remaining_channels - self.n_early_size
self.convinv.append(Invertible1x1Conv(n_remaining_channels))
self.WN.append(WN(n_half, n_mel_channels, **WN_config))
self.n_remaining_channels = n_remaining_channels # Useful during inference
def forward(self, forward_input):
"""
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames
forward_input[1] = audio: batch x time
"""
spect, audio = forward_input
audio = audio.unfold(
1, self.n_audio_channel, self.n_audio_channel).permute(0, 2, 1)
output_audio = []
log_s_list = []
log_det_W_list = []
for k in range(self.n_flows):
if k % self.n_early_every == 0 and k > 0:
output_audio.append(audio[:,:self.n_early_size,:])
audio = audio[:,self.n_early_size:,:]
audio, log_det_W = self.convinv[k](audio)
log_det_W_list.append(log_det_W)
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect))
log_s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = (torch.exp(log_s))*audio_1 + b
log_s_list.append(log_s)
audio = torch.cat([audio_0, audio_1], 1)
output_audio.append(audio)
return torch.cat(output_audio, 1), log_s_list, log_det_W_list
def infer(self, spect, sigma=1.0):
spect_size = spect.size()
l = spect.size(2)*(256 // self.n_audio_channel)
spect = spect.to(torch.float32)
if spect.type() == 'torch.HalfTensor':
audio = torch.HalfTensor(spect.size(0),
self.n_remaining_channels,
l).normal_()
else:
audio = torch.FloatTensor(spect.size(0),
self.n_remaining_channels,
l).normal_()
for k in reversed(range(self.n_flows)):
n_half = int(audio.size(1)/2)
audio_0 = audio[:,:n_half,:]
audio_1 = audio[:,n_half:,:]
output = self.WN[k]((audio_0, spect))
s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = (audio_1 - b)/torch.exp(s)
audio = torch.cat([audio_0, audio_1],1)
audio = self.convinv[k](audio, reverse=True)
if k % self.n_early_every == 0 and k > 0:
if spect.type() == 'torch.HalfTensor':
z = torch.HalfTensor(spect.size(0), self.n_early_size, l).normal_()
else:
z = torch.FloatTensor(spect.size(0), self.n_early_size, l).normal_()
audio = torch.cat((sigma*z, audio),1)
audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data
return audio
@staticmethod
def remove_weightnorm(model):
squeezewave = model
for WN in squeezewave.WN:
WN.start = torch.nn.utils.remove_weight_norm(WN.start)
WN.in_layers = remove_batch_norm(WN.in_layers)
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer)
WN.res_skip_layers = remove(WN.res_skip_layers)
return squeezewave
def fuse_conv_and_bn(conv, bn):
fusedconv = torch.nn.Conv1d(
conv.in_channels,
conv.out_channels,
kernel_size = conv.kernel_size,
padding=conv.padding,
bias=True,
groups=conv.groups)
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps+bn.running_var)))
w_bn = w_bn.clone()
fusedconv.weight.data = torch.mm(w_bn, w_conv).view(fusedconv.weight.size())
if conv.bias is not None:
b_conv = conv.bias
else:
b_conv = torch.zeros( conv.weight.size(0) )
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
b_bn = torch.unsqueeze(b_bn, 1)
bn_3 = b_bn.expand(-1, 3)
b = torch.matmul(w_conv, torch.transpose(bn_3, 0, 1))[range(b_bn.size()[0]), range(b_bn.size()[0])]
fusedconv.bias.data = ( b_conv + b )
return fusedconv
def remove_batch_norm(conv_list):
new_conv_list = torch.nn.ModuleList()
for old_conv in conv_list:
depthwise = fuse_conv_and_bn(old_conv[1], old_conv[0])
pointwise = old_conv[2]
new_conv_list.append(torch.nn.Sequential(depthwise, pointwise))
return new_conv_list
def remove(conv_list):
new_conv_list = torch.nn.ModuleList()
for old_conv in conv_list:
old_conv = torch.nn.utils.remove_weight_norm(old_conv)
new_conv_list.append(old_conv)
return new_conv_list