|
# We retain the copyright notice by NVIDIA from the original code. However, we
|
|
# we reserve our rights on the modifications based on the original code.
|
|
#
|
|
# *****************************************************************************
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
# * Redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer.
|
|
# * Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution.
|
|
# * Neither the name of the NVIDIA CORPORATION nor the
|
|
# names of its contributors may be used to endorse or promote products
|
|
# derived from this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
# ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
|
|
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
# *****************************************************************************
|
|
import os
|
|
from scipy.io.wavfile import write
|
|
import torch
|
|
from mel2samp import files_to_list, MAX_WAV_VALUE
|
|
from denoiser import Denoiser
|
|
import time
|
|
|
|
def main(mel_files, squeezewave_path, sigma, output_dir, sampling_rate, is_fp16,
|
|
denoiser_strength):
|
|
mel_files = files_to_list(mel_files)
|
|
|
|
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
device = torch.device('cpu')
|
|
squeezewave = torch.load(squeezewave_path,map_location=device) ['model']
|
|
squeezewave = squeezewave.remove_weightnorm(squeezewave)
|
|
squeezewave.eval()
|
|
if is_fp16:
|
|
from apex import amp
|
|
squeezewave, _ = amp.initialize(squeezewave,[],opt_level="O3")
|
|
|
|
if denoiser_strength > 0:
|
|
denoiser = Denoiser(squeezewave)
|
|
start = time.time()
|
|
for i, file_path in enumerate(mel_files):
|
|
file_name = os.path.splitext(os.path.basename(file_path))[0]
|
|
mel = torch.load(file_path,map_location=device)
|
|
mel = torch.autograd.Variable(mel)
|
|
mel = mel.half()
|
|
with torch.no_grad():
|
|
audio = squeezewave.infer(mel, sigma=sigma).float()
|
|
if denoiser_strength > 0:
|
|
audio = denoiser(audio, denoiser_strength)
|
|
audio = audio * MAX_WAV_VALUE
|
|
audio = audio.squeeze()
|
|
audio = audio.cpu().numpy()
|
|
audio = audio.astype('int16')
|
|
audio_path = os.path.join(
|
|
output_dir, "{}_synthesis.wav".format(file_name))
|
|
write(audio_path, sampling_rate, audio)
|
|
print(audio_path)
|
|
end = time.time()
|
|
print("Squeezewave vocoder time")
|
|
print(end-start)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-f', "--filelist_path", required=True)
|
|
parser.add_argument('-w', '--squeezewave_path',
|
|
help='Path to squeezewave decoder checkpoint with model')
|
|
parser.add_argument('-o', "--output_dir", required=True)
|
|
parser.add_argument("-s", "--sigma", default=1.0, type=float)
|
|
parser.add_argument("--sampling_rate", default=22050, type=int)
|
|
parser.add_argument("--is_fp16", action="store_true")
|
|
parser.add_argument("-d", "--denoiser_strength", default=0.0, type=float,
|
|
help='Removes model bias. Start with 0.1 and adjust')
|
|
|
|
args = parser.parse_args()
|
|
|
|
main(args.filelist_path, args.squeezewave_path, args.sigma, args.output_dir,
|
|
args.sampling_rate, args.is_fp16, args.denoiser_strength)
|