|
# We retain the copyright notice by NVIDIA from the original code. However, we
|
|
# we reserve our rights on the modifications based on the original code.
|
|
#
|
|
# *****************************************************************************
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
# * Redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer.
|
|
# * Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution.
|
|
# * Neither the name of the NVIDIA CORPORATION nor the
|
|
# names of its contributors may be used to endorse or promote products
|
|
# derived from this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
|
|
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
# *****************************************************************************\
|
|
import os
|
|
import random
|
|
import argparse
|
|
import json
|
|
import torch
|
|
import torch.utils.data
|
|
import sys
|
|
from scipy.io.wavfile import read
|
|
|
|
# We're using the audio processing from TacoTron2 to make sure it matches
|
|
from TacotronSTFT import TacotronSTFT
|
|
|
|
MAX_WAV_VALUE = 32768.0
|
|
|
|
def files_to_list(filename):
|
|
"""
|
|
Takes a text file of filenames and makes a list of filenames
|
|
"""
|
|
with open(filename, encoding='utf-8') as f:
|
|
files = f.readlines()
|
|
|
|
files = [f.rstrip() for f in files]
|
|
return files
|
|
|
|
def load_wav_to_torch(full_path):
|
|
"""
|
|
Loads wavdata into torch array
|
|
"""
|
|
sampling_rate, data = read(full_path)
|
|
return torch.from_numpy(data).float(), sampling_rate
|
|
|
|
|
|
class Mel2Samp(torch.utils.data.Dataset):
|
|
"""
|
|
This is the main class that calculates the spectrogram and returns the
|
|
spectrogram, audio pair.
|
|
"""
|
|
def __init__(self, n_audio_channel, training_files, segment_length,
|
|
filter_length, hop_length, win_length, sampling_rate, mel_fmin,
|
|
mel_fmax):
|
|
self.audio_files = files_to_list(training_files)
|
|
random.seed(1234)
|
|
random.shuffle(self.audio_files)
|
|
self.stft = TacotronSTFT(filter_length=filter_length,
|
|
hop_length=hop_length,
|
|
win_length=win_length,
|
|
sampling_rate=sampling_rate,
|
|
mel_fmin=mel_fmin, mel_fmax=mel_fmax,
|
|
n_group=n_audio_channel)
|
|
self.segment_length = segment_length
|
|
self.sampling_rate = sampling_rate
|
|
|
|
def get_mel(self, audio):
|
|
audio_norm = audio / MAX_WAV_VALUE
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
|
|
melspec = self.stft.mel_spectrogram(audio_norm)
|
|
melspec = torch.squeeze(melspec, 0)
|
|
return melspec
|
|
|
|
def __getitem__(self, index):
|
|
# Read audio
|
|
filename = self.audio_files[index]
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
if sampling_rate != self.sampling_rate:
|
|
raise ValueError("{} SR doesn't match target {} SR".format(
|
|
sampling_rate, self.sampling_rate))
|
|
|
|
# Take segment
|
|
if audio.size(0) >= self.segment_length:
|
|
max_audio_start = audio.size(0) - self.segment_length
|
|
audio_start = random.randint(0, max_audio_start)
|
|
audio = audio[audio_start:audio_start+self.segment_length]
|
|
else:
|
|
audio = torch.nn.functional.pad(
|
|
audio, (0, self.segment_length - audio.size(0)),
|
|
'constant').data
|
|
|
|
mel = self.get_mel(audio)
|
|
audio = audio / MAX_WAV_VALUE
|
|
|
|
return (mel, audio)
|
|
|
|
def __len__(self):
|
|
return len(self.audio_files)
|
|
|
|
# ===================================================================
|
|
# Takes directory of clean audio and makes directory of spectrograms
|
|
# Useful for making test sets
|
|
# ===================================================================
|
|
if __name__ == "__main__":
|
|
# Get defaults so it can work with no Sacred
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-f', "--filelist_path", required=True)
|
|
parser.add_argument('-c', '--config', type=str,
|
|
help='JSON file for configuration')
|
|
parser.add_argument('-o', '--output_dir', type=str,
|
|
help='Output directory')
|
|
args = parser.parse_args()
|
|
|
|
with open(args.config) as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
data_config = config["data_config"]
|
|
squeezewave_config = config["squeezewave_config"]
|
|
mel2samp = Mel2Samp(squeezewave_config['n_audio_channel'], **data_config)
|
|
|
|
filepaths = files_to_list(args.filelist_path)
|
|
|
|
# Make directory if it doesn't exist
|
|
if not os.path.isdir(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
os.chmod(args.output_dir, 0o775)
|
|
|
|
for filepath in filepaths:
|
|
audio, sr = load_wav_to_torch(filepath)
|
|
melspectrogram = mel2samp.get_mel(audio)
|
|
filename = os.path.basename(filepath)
|
|
new_filepath = args.output_dir + '/' + filename + '.pt'
|
|
print(new_filepath)
|
|
torch.save(melspectrogram, new_filepath)
|