Fork of https://github.com/alokprasad/fastspeech_squeezewave to also fix denoising in squeezewave
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

39 lines
1.6 KiB

import sys
import torch
from stft import STFT
class Denoiser(torch.nn.Module):
""" Removes model bias from audio produced with squeezewave"""
def __init__(self, squeezewave, filter_length=1024, n_overlap=4,
win_length=1024, mode='zeros'):
super(Denoiser, self).__init__()
self.stft = STFT(filter_length=filter_length,
hop_length=int(filter_length/n_overlap),
win_length=win_length).cuda()
if mode == 'zeros':
mel_input = torch.zeros(
(1, 80, 88),
dtype=squeezewave.upsample.weight.dtype,
device=squeezewave.upsample.weight.device)
elif mode == 'normal':
mel_input = torch.randn(
(1, 80, 88),
dtype=squeezewave.upsample.weight.dtype,
device=squeezewave.upsample.weight.device)
else:
raise Exception("Mode {} if not supported".format(mode))
with torch.no_grad():
bias_audio = squeezewave.infer(mel_input, sigma=0.0).float()
bias_spec, _ = self.stft.transform(bias_audio)
self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])
def forward(self, audio, strength=0.1):
audio_spec, audio_angles = self.stft.transform(audio.cuda().float())
audio_spec_denoised = audio_spec - self.bias_spec * strength
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles)
return audio_denoised