Fork of https://github.com/alokprasad/fastspeech_squeezewave to also fix denoising in squeezewave
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

92 lines
2.9 KiB

from text import symbols
class Hparams:
""" hyper parameters """
def __init__(self):
################################
# Experiment Parameters #
################################
self.epochs = 500
self.iters_per_checkpoint = 1000
self.seed = 1234
self.dynamic_loss_scaling = True
self.fp16_run = False
self.distributed_run = False
self.dist_backend = "nccl"
self.dist_url = "tcp://localhost:54321"
self.cudnn_enabled = True
self.cudnn_benchmark = False
self.ignore_layers = ['embedding.weight']
################################
# Data Parameters #
################################
self.load_mel_from_disk = False
self.training_files = 'filelists/ljs_audio_text_train_filelist.txt'
self.validation_files = 'filelists/ljs_audio_text_val_filelist.txt'
self.text_cleaners = ['english_cleaners']
################################
# Audio Parameters #
################################
self.max_wav_value = 32768.0
self.sampling_rate = 22050
self.filter_length = 1024
self.hop_length = 256
self.win_length = 1024
self.n_mel_channels = 80
self.mel_fmin = 0.0
self.mel_fmax = 8000.0
################################
# Model Parameters #
################################
self.n_symbols = len(symbols)
self.symbols_embedding_dim = 512
# Encoder parameters
self.encoder_kernel_size = 5
self.encoder_n_convolutions = 3
self.encoder_embedding_dim = 512
# Decoder parameters
self.n_frames_per_step = 1 # currently only 1 is supported
self.decoder_rnn_dim = 1024
self.prenet_dim = 256
self.max_decoder_steps = 1000
self.gate_threshold = 0.5
self.p_attention_dropout = 0.1
self.p_decoder_dropout = 0.1
# Attention parameters
self.attention_rnn_dim = 1024
self.attention_dim = 128
# Location Layer parameters
self.attention_location_n_filters = 32
self.attention_location_kernel_size = 31
# Mel-post processing network parameters
self.postnet_embedding_dim = 512
self.postnet_kernel_size = 5
self.postnet_n_convolutions = 5
################################
# Optimization Hyperparameters #
################################
self.use_saved_learning_rate = False
self.learning_rate = 1e-3
self.weight_decay = 1e-6
self.grad_clip_thresh = 1.0
self.batch_size = 64
self.mask_padding = True # set model's padded outputs to padded values
def return_self(self):
return self
def create_hparams():
hparams = Hparams()
return hparams.return_self()