import time import copy import argparse import torch import torch.nn as nn import dataset import util import models from itertools import chain if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--name', required=True) parser.add_argument('--filename', required=True) parser.add_argument('--epochs', default=50) parser.add_argument('--seed', type=int, default=None) parser.add_argument('--patience', type=int, default=5) parser.add_argument('--dropout', type=float, default=0.5) parser.add_argument('--alpha', type=float, default=0.2) args = parser.parse_args() if 'atis' in args.name: args.dataset = 'atis' elif 'snips' in args.name: args.dataset = 'snips' if 'intent' in args.name: args.model = 'intent' elif 'slot' in args.name: args.model = 'slot' elif 'joint' in args.name: args.model = 'joint' print(f"seed {util.rep(args.seed)}") cuda = torch.cuda.is_available() train, valid, test, num_words, num_intent, num_slot, wordvecs = dataset.load(args.dataset, batch_size=8, seq_len=50) open(args.filename, 'w').close() # clear the file f = open(args.filename, "a") for filter_count in chain(range(300, 10, -5), range(10, 0, -1)): if args.model == 'intent': model = models.CNNIntent(num_words, 100, num_intent, (filter_count,), 5, args.dropout, wordvecs) elif args.model == 'slot': model = models.CNNSlot(num_words, 100, num_slot, (filter_count,), 5, args.dropout, wordvecs) elif args.model == 'joint': model = models.CNNJoint(num_words, 100, num_intent, num_slot, (filter_count,), 5, args.dropout, wordvecs) teacher = util.load_model(args.model, num_words, num_intent, num_slot, args.dropout, wordvecs) teacher.load_state_dict(torch.load(args.name)) criterion = torch.nn.CrossEntropyLoss(ignore_index=-1) distill_criterion = nn.KLDivLoss(reduction='batchmean') optimizer = torch.optim.Adam(model.parameters()) if cuda: model = model.cuda() teacher = teacher.cuda() best_valid_loss = float('inf') last_epoch_to_improve = 0 best_model = model model_filename = f"models/{args.dataset}_{args.model}" if args.model == 'intent': for epoch in range(args.epochs): start_time = time.time() train_loss, train_acc = util.distill_intent(teacher, model, 1.0, train, distill_criterion, optimizer, cuda) valid_loss, valid_acc = util.valid_intent(model, valid, criterion, cuda) end_time = time.time() elapsed_time = end_time - start_time print(f"Epoch {epoch + 1:03} took {elapsed_time:.3f} seconds") print(f"\tTrain Loss: {train_loss:.5f}, Acc: {train_acc:.5f}") print(f"\tValid Loss: {valid_loss:.5f}, Acc: {valid_acc:.5f}") if valid_loss < best_valid_loss: last_epoch_to_improve = epoch best_valid_loss = valid_loss best_model = copy.deepcopy(model) print("\tNew best valid loss!") if last_epoch_to_improve + args.patience < epoch: break _, test_acc = util.valid_intent(best_model, test, criterion, cuda) print(f"Test Acc: {test_acc:.5f}") print(f"{sum(best_model.filter_sizes)}, {test_acc:.5f}", file=f, flush=True) elif args.model == 'slot': for epoch in range(args.epochs): start_time = time.time() train_loss, train_f1 = util.distill_slot(teacher, model, 1.0, train, distill_criterion, optimizer, cuda) valid_loss, valid_f1 = util.valid_slot(model, valid, criterion, cuda) end_time = time.time() elapsed_time = end_time - start_time print(f"Epoch {epoch + 1:03} took {elapsed_time:.3f} seconds") print(f"\tTrain Loss: {train_loss:.5f}, F1: {train_f1:.5f}") print(f"\tValid Loss: {valid_loss:.5f}, F1: {valid_f1:.5f}") if valid_loss < best_valid_loss: last_epoch_to_improve = epoch best_valid_loss = valid_loss best_model = copy.deepcopy(model) print("\tNew best valid loss!") if last_epoch_to_improve + args.patience < epoch: break _, test_f1 = util.valid_slot(best_model, test, criterion, cuda) print(f"Test F1: {test_f1:.5f}") print(f"{sum(best_model.filter_sizes)}, {test_f1:.5f}", file=f, flush=True) elif args.model == 'joint': for epoch in range(args.epochs): start_time = time.time() train_loss, (intent_train_loss, intent_train_acc), (slot_train_loss, slot_train_f1) = util.distill_joint(teacher, model, 1.0, train, distill_criterion, optimizer, cuda, args.alpha) valid_loss, (intent_valid_loss, intent_valid_acc), (slot_valid_loss, slot_valid_f1) = util.valid_joint(model, valid, criterion, cuda, args.alpha) end_time = time.time() elapsed_time = end_time - start_time print(f"Epoch {epoch + 1:03} took {elapsed_time:.3f} seconds") print(f"\tTrain Loss: {train_loss:.5f}, (Intent Loss: {intent_train_loss:.5f}, Acc: {intent_train_acc:.5f}), (Slot Loss: {slot_train_loss:.5f}, F1: {slot_train_f1:.5f})") print(f"\tValid Loss: {valid_loss:.5f}, (Intent Loss: {intent_valid_loss:.5f}, Acc: {intent_valid_acc:.5f}), (Slot Loss: {slot_valid_loss:.5f}, F1: {slot_valid_f1:.5f})") if valid_loss < best_valid_loss: last_epoch_to_improve = epoch best_valid_loss = valid_loss best_model = copy.deepcopy(model) print("\tNew best valid loss!") if last_epoch_to_improve + args.patience < epoch: break _, (_, intent_test_acc), (_, slot_test_f1) = util.valid_joint(best_model, test, criterion, cuda, args.alpha) print(f"Test Intent Acc: {intent_test_acc:.5f}, Slot F1: {slot_test_f1:.5f}") print(f"{sum(best_model.filter_sizes)}, {intent_test_acc:.5f}, {slot_test_f1:.5f}", file=f, flush=True)