import torch import torch.nn as nn import numpy as np import models import pickle import time start_time = time.time() PAD = "" BOS = "" EOS = "" word2idx = pickle.load(open("word2idx.pkl", "rb")) wordvecs = pickle.load(open("wordvecs.pkl", "rb")) slots = pickle.load(open("slots.pkl", "rb")) intents = pickle.load(open("intents.pkl", "rb")) num_words = len(word2idx) num_intent = 7 num_slot = 72 filter_count = 300 dropout = 0 embedding_dim = 100 def pad_query(sequence): sequence = [word2idx[BOS]] + sequence + [word2idx[EOS]] sequence = sequence[:50] sequence = np.pad(sequence, (0, 50 - len(sequence)), mode='constant', constant_values=(word2idx[PAD],)) return sequence query = "What's the weather like in Great Mills right now?" q = query.lower().replace("'", " ").replace("?", " ").strip() true_length = [len(q.split()), 0, 0, 0, 0, 0, 0 ,0] qq = torch.from_numpy(pad_query([word2idx[word] for word in q.split()])) model = models.CNNJoint(num_words, embedding_dim, num_intent, num_slot, (filter_count,), 5, dropout, wordvecs) model.eval() model.load_state_dict(torch.load('snips_joint', map_location=torch.device('cpu'))) criterion = torch.nn.CrossEntropyLoss(ignore_index=-1) pad_tensor = torch.from_numpy(pad_query([word2idx[w] for w in []])) batch = torch.stack([qq, pad_tensor, pad_tensor, pad_tensor, pad_tensor, pad_tensor, pad_tensor, pad_tensor]) pred_intent, pred_slots = model(batch) slt = [str(item) for batch_num, sublist in enumerate(pred_slots.max(1)[1].tolist()) for item in sublist[1:true_length[batch_num] + 1]] out_slots = [slots[int(c)] for c in slt] itnt = pred_intent.max(1)[1].tolist()[0] out_intent = intents[itnt] print("Input: {}\nIntent: {}\nSlots: {}".format(query, out_intent, out_slots)) print("--- %s seconds ---" % (time.time() - start_time))