import time
|
|
import copy
|
|
import argparse
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
import models
|
|
import dataset
|
|
import util
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--name', required=True)
|
|
args = parser.parse_args()
|
|
|
|
if 'atis' in args.name:
|
|
args.dataset = 'atis'
|
|
elif 'snips' in args.name:
|
|
args.dataset = 'snips'
|
|
|
|
if 'intent' in args.name:
|
|
args.model = 'intent'
|
|
elif 'slot' in args.name:
|
|
args.model = 'slot'
|
|
elif 'joint' in args.name:
|
|
args.model = 'joint'
|
|
|
|
args.dropout = 0
|
|
|
|
cuda = torch.cuda.is_available()
|
|
train, valid, test, num_words, num_intent, num_slot, wordvecs = dataset.load(args.dataset, batch_size=8, seq_len=50)
|
|
model = util.load_model(args.model, num_words, num_intent, num_slot, args.dropout, wordvecs)
|
|
model.eval()
|
|
|
|
model.load_state_dict(torch.load(args.name))
|
|
criterion = torch.nn.CrossEntropyLoss(ignore_index=-1)
|
|
|
|
if cuda:
|
|
model = model.cuda()
|
|
|
|
best_valid_loss = float('inf')
|
|
last_epoch_to_improve = 0
|
|
best_model = model
|
|
|
|
count = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
print(count)
|
|
|
|
if args.model == 'intent':
|
|
_, test_acc = util.valid_intent(model, test, criterion, cuda)
|
|
print(f"Test Acc: {test_acc:.5f}")
|
|
elif args.model == 'slot':
|
|
_, test_f1 = util.valid_slot(model, test, criterion, cuda)
|
|
print(f"Test F1: {test_f1:.5f}")
|
|
elif args.model == 'joint':
|
|
_, (_, intent_test_acc), (_, slot_test_f1) = util.valid_joint(model, test, criterion, cuda, 0)
|
|
print(f"Test Intent Acc: {intent_test_acc:.5f}, Slot F1: {slot_test_f1:.5f}")
|
|
|