import time
|
|
import copy
|
|
import argparse
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
import models
|
|
import dataset
|
|
import util
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--name', required=True)
|
|
parser.add_argument('--zeroshot', action='store_true')
|
|
|
|
parser.add_argument('--epochs', default=50)
|
|
parser.add_argument('--seed', type=int, default=None)
|
|
parser.add_argument('--patience', type=int, default=5)
|
|
parser.add_argument('--dropout', type=float, default=0.5)
|
|
parser.add_argument('--alpha', type=float, default=0.2)
|
|
parser.add_argument('--l', type=int, default=2)
|
|
parser.add_argument('--filename')
|
|
args = parser.parse_args()
|
|
|
|
if 'atis' in args.name:
|
|
args.dataset = 'atis'
|
|
elif 'snips' in args.name:
|
|
args.dataset = 'snips'
|
|
|
|
if 'intent' in args.name:
|
|
args.model = 'intent'
|
|
elif 'slot' in args.name:
|
|
args.model = 'slot'
|
|
elif 'joint' in args.name:
|
|
args.model = 'joint'
|
|
|
|
print(f"seed {util.rep(args.seed)}")
|
|
|
|
cuda = torch.cuda.is_available()
|
|
train, valid, test, num_words, num_intent, num_slot, wordvecs = dataset.load(args.dataset, batch_size=8, seq_len=50)
|
|
|
|
model = util.load_model(args.model, num_words, num_intent, num_slot, args.dropout, wordvecs)
|
|
|
|
model.load_state_dict(torch.load(args.name))
|
|
criterion = torch.nn.CrossEntropyLoss(ignore_index=-1)
|
|
|
|
if cuda:
|
|
model = model.cuda()
|
|
|
|
if len(args.name.split('/')) > 1:
|
|
nameprefix = args.name.split('/')[-1]
|
|
else:
|
|
nameprefix = args.name
|
|
|
|
|
|
filename = args.filename if args.filename else f"results/{nameprefix}_{'zeroshot' if args.zeroshot else 'retrain'}_l{args.l}_alpha{args.alpha}.csv"
|
|
if args.model == 'intent':
|
|
open(filename, 'w').close() # clear the file
|
|
f = open(filename, "a")
|
|
while sum(model.filter_sizes) > 0:
|
|
_, test_acc = util.valid_intent(model, test, criterion, cuda)
|
|
print(f"{sum(model.filter_sizes)}, {test_acc:.5f}", file=f, flush=True)
|
|
|
|
if sum(model.filter_sizes) > 10:
|
|
model.prune(5, args.l)
|
|
else:
|
|
model.prune(1, args.l)
|
|
|
|
if not args.zeroshot:
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
best_epoch = 0
|
|
best_valid_loss, _ = util.valid_intent(model, valid, criterion, cuda)
|
|
best_model = copy.deepcopy(model)
|
|
epoch = 1
|
|
|
|
while epoch <= best_epoch + args.patience:
|
|
train_loss, train_acc = util.train_intent(model, train, criterion, optimizer, cuda)
|
|
valid_loss, valid_acc = util.valid_intent(model, valid, criterion, cuda)
|
|
|
|
if valid_loss < best_valid_loss:
|
|
best_valid_loss = valid_loss
|
|
best_epoch = epoch
|
|
best_model = copy.deepcopy(model)
|
|
|
|
epoch += 1
|
|
|
|
model = best_model
|
|
elif args.model == 'slot':
|
|
open(filename, 'w').close() # clear the file
|
|
f = open(filename, "a")
|
|
while sum(model.filter_sizes) > 0:
|
|
_, test_f1 = util.valid_slot(model, test, criterion, cuda)
|
|
print(f"{sum(model.filter_sizes)}, {test_f1:.5f}", file=f, flush=True)
|
|
|
|
if sum(model.filter_sizes) > 10:
|
|
model.prune(5, args.l)
|
|
else:
|
|
model.prune(1, args.l)
|
|
|
|
if not args.zeroshot:
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
best_epoch = 0
|
|
best_valid_loss, _ = util.valid_slot(model, valid, criterion, cuda)
|
|
best_model = copy.deepcopy(model)
|
|
epoch = 1
|
|
|
|
while epoch <= best_epoch + args.patience:
|
|
train_loss, train_f1 = util.train_slot(model, train, criterion, optimizer, cuda)
|
|
valid_loss, valid_f1 = util.valid_slot(model, valid, criterion, cuda)
|
|
|
|
if valid_loss < best_valid_loss:
|
|
best_valid_loss = valid_loss
|
|
best_epoch = epoch
|
|
best_model = copy.deepcopy(model)
|
|
|
|
epoch += 1
|
|
|
|
model = best_model
|
|
elif args.model == 'joint':
|
|
open(filename, 'w').close() # clear the file
|
|
f = open(filename, "a")
|
|
while sum(model.filter_sizes) > 0:
|
|
_, (_, test_acc), (_, test_f1) = util.valid_joint(model, test, criterion, cuda, args.alpha)
|
|
print(f"{sum(model.filter_sizes)}, {test_acc:.5f}, {test_f1:.5f}", file=f, flush=True)
|
|
|
|
if sum(model.filter_sizes) > 10:
|
|
model.prune(5, args.l)
|
|
else:
|
|
model.prune(1, args.l)
|
|
|
|
if not args.zeroshot:
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
best_epoch = 0
|
|
best_valid_loss, (_, _), (_, _) = util.valid_joint(model, valid, criterion, cuda, args.alpha)
|
|
best_model = copy.deepcopy(model)
|
|
epoch = 1
|
|
|
|
while epoch <= best_epoch + args.patience:
|
|
train_loss, (_, _), (_, _) = util.train_joint(model, train, criterion, optimizer, cuda, args.alpha)
|
|
valid_loss, (_, _), (_, _) = util.valid_joint(model, valid, criterion, cuda, args.alpha)
|
|
|
|
if valid_loss < best_valid_loss:
|
|
best_valid_loss = valid_loss
|
|
best_epoch = epoch
|
|
best_model = copy.deepcopy(model)
|
|
|
|
epoch += 1
|
|
|
|
model = best_model
|
|
|