import tensorflow as tf from text import symbols def create_hparams(hparams_string=None, verbose=False): """Create model hyperparameters. Parse nondefault from given string.""" hparams = tf.contrib.training.HParams( ################################ # Experiment Parameters # ################################ epochs=500, iters_per_checkpoint=500, seed=1234, dynamic_loss_scaling=True, fp16_run=False, distributed_run=False, dist_backend="nccl", dist_url="file://distributed.dpt", cudnn_enabled=True, cudnn_benchmark=False, ################################ # Data Parameters # ################################ load_mel_from_disk=False, training_files='filelists/ljs_audio_text_train_filelist.txt', validation_files='filelists/ljs_audio_text_val_filelist.txt', text_cleaners=['english_cleaners'], sort_by_length=False, ################################ # Audio Parameters # ################################ max_wav_value=32768.0, sampling_rate=22050, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, mel_fmin=0.0, mel_fmax=None, # if None, half the sampling rate ################################ # Model Parameters # ################################ n_symbols=len(symbols), symbols_embedding_dim=512, # Encoder parameters encoder_kernel_size=5, encoder_n_convolutions=3, encoder_embedding_dim=512, # Decoder parameters n_frames_per_step=1, # currently only 1 is supported decoder_rnn_dim=1024, prenet_dim=256, max_decoder_steps=1000, gate_threshold=0.6, # Attention parameters attention_rnn_dim=1024, attention_dim=128, # Location Layer parameters attention_location_n_filters=32, attention_location_kernel_size=31, # Mel-post processing network parameters postnet_embedding_dim=512, postnet_kernel_size=5, postnet_n_convolutions=5, ################################ # Optimization Hyperparameters # ################################ used_saved_learning_rate=False, learning_rate=1e-3, weight_decay=1e-6, grad_clip_thresh=1, batch_size=48, mask_padding=False # set model's padded outputs to padded values ) if hparams_string: tf.logging.info('Parsing command line hparams: %s', hparams_string) hparams.parse(hparams_string) if verbose: tf.logging.info('Final parsed hparams: %s', hparams.values()) return hparams