# Tacotron 2 (without wavenet) PyTorch implementation of [Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf). This implementation includes **distributed** and **automatic mixed precision** support and uses the [LJSpeech dataset](https://keithito.com/LJ-Speech-Dataset/). Distributed and Automatic Mixed Precision support relies on NVIDIA's [Apex] and [AMP]. Visit our [website] for audio samples using our published [Tacotron 2] and [WaveGlow] models. ![Alignment, Predicted Mel Spectrogram, Target Mel Spectrogram](tensorboard.png) ## Pre-requisites 1. NVIDIA GPU + CUDA cuDNN ## Setup 1. Download and extract the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/) 2. Clone this repo: `git clone https://github.com/NVIDIA/tacotron2.git` 3. CD into this repo: `cd tacotron2` 4. Initialize submodule: `git submodule init; git submodule update` 5. Update .wav paths: `sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt` - Alternatively, set `load_mel_from_disk=True` in `hparams.py` and update mel-spectrogram paths 6. Install [PyTorch 1.0] 7. Install [Apex] 8. Install python requirements or build docker image - Install python requirements: `pip install -r requirements.txt` ## Training 1. `python train.py --output_directory=outdir --log_directory=logdir` 2. (OPTIONAL) `tensorboard --logdir=outdir/logdir` ## Training using a pre-trained model Training using a pre-trained model can lead to faster convergence By default, the dataset dependent text embedding layers are [ignored] 1. Download our published [Tacotron 2] model 2. `python train.py --output_directory=outdir --log_directory=logdir -c tacotron2_statedict.pt --warm_start` ## Multi-GPU (distributed) and Automatic Mixed Precision Training 1. `python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True` ## Inference demo 1. Download our published [Tacotron 2] model 2. Download our published [WaveGlow] model 3. `jupyter notebook --ip=127.0.0.1 --port=31337` 4. Load inference.ipynb N.b. When performing Mel-Spectrogram to Audio synthesis, make sure Tacotron 2 and the Mel decoder were trained on the same mel-spectrogram representation. ## Related repos [WaveGlow](https://github.com/NVIDIA/WaveGlow) Faster than real time Flow-based Generative Network for Speech Synthesis [nv-wavenet](https://github.com/NVIDIA/nv-wavenet/) Faster than real time WaveNet. ## Acknowledgements This implementation uses code from the following repos: [Keith Ito](https://github.com/keithito/tacotron/), [Prem Seetharaman](https://github.com/pseeth/pytorch-stft) as described in our code. We are inspired by [Ryuchi Yamamoto's](https://github.com/r9y9/tacotron_pytorch) Tacotron PyTorch implementation. We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan Wang and Zongheng Yang. [WaveGlow]: https://drive.google.com/open?id=1rpK8CzAAirq9sWZhe9nlfvxMF1dRgFbF [Tacotron 2]: https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view?usp=sharing [pytorch 1.0]: https://github.com/pytorch/pytorch#installation [website]: https://nv-adlr.github.io/WaveGlow [ignored]: https://github.com/NVIDIA/tacotron2/blob/master/hparams.py#L22 [Apex]: https://github.com/nvidia/apex [AMP]: https://github.com/NVIDIA/apex/tree/master/apex/amp