import random import torch from torch.utils.tensorboard import SummaryWriter from plotting_utils import plot_alignment_to_numpy, plot_spectrogram_to_numpy from plotting_utils import plot_gate_outputs_to_numpy class Tacotron2Logger(SummaryWriter): def __init__(self, logdir): super(Tacotron2Logger, self).__init__(logdir) def log_training(self, reduced_loss, grad_norm, learning_rate, duration, iteration): self.add_scalar("training.loss", reduced_loss, iteration) self.add_scalar("grad.norm", grad_norm, iteration) self.add_scalar("learning.rate", learning_rate, iteration) self.add_scalar("duration", duration, iteration) def log_validation(self, reduced_loss, model, y, y_pred, iteration): self.add_scalar("validation.loss", reduced_loss, iteration) _, mel_outputs, gate_outputs, alignments = y_pred mel_targets, gate_targets = y # plot distribution of parameters for tag, value in model.named_parameters(): tag = tag.replace('.', '/') self.add_histogram(tag, value.data.cpu().numpy(), iteration) # plot alignment, mel target and predicted, gate target and predicted idx = random.randint(0, alignments.size(0) - 1) self.add_image( "alignment", plot_alignment_to_numpy(alignments[idx].data.cpu().numpy().T), iteration, dataformats='HWC') self.add_image( "mel_target", plot_spectrogram_to_numpy(mel_targets[idx].data.cpu().numpy()), iteration, dataformats='HWC') self.add_image( "mel_predicted", plot_spectrogram_to_numpy(mel_outputs[idx].data.cpu().numpy()), iteration, dataformats='HWC') self.add_image( "gate", plot_gate_outputs_to_numpy( gate_targets[idx].data.cpu().numpy(), torch.sigmoid(gate_outputs[idx]).data.cpu().numpy()), iteration, dataformats='HWC')