# Tacotron 2 (without wavenet) Tacotron 2 PyTorch implementation of [Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf). This implementation includes **distributed** and **fp16** support and uses the [LJSpeech dataset](https://keithito.com/LJ-Speech-Dataset/). Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's [Apex Library](https://github.com/nvidia/apex). ![Alignment, Predicted Mel Spectrogram, Target Mel Spectrogram](tensorboard.png) ## Pre-requisites 1. NVIDIA GPU + CUDA cuDNN ## Setup 1. Download and extract the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/) 2. Clone this repo: `git clone https://github.com/NVIDIA/tacotron2.git` 3. CD into this repo: `cd tacotron2` 4. Update .wav paths: `sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt` 5. Install [pytorch 0.4](https://github.com/pytorch/pytorch) 6. Install python requirements or use docker container (tbd) - Install python requirements: `pip install requirements.txt` - **OR** - Docker container `(tbd)` ## Training 1. `python train.py --output_directory=outdir --log_directory=logdir` 2. (OPTIONAL) `tensorboard --logdir=outdir/logdir` ## Multi-GPU (distributed) and FP16 Training 1. `python -m multiproc train.py --output_directory=/outdir --log_directory=/logdir --hparams=distributed_run=True` ## Inference 1. `jupyter notebook --ip=127.0.0.1 --port=31337` 2. load inference.ipynb ## Related repos [nv-wavenet](https://github.com/NVIDIA/nv-wavenet/): Faster than real-time wavenet inference ## Acknowledgements This implementation uses code from the following repos: [Keith Ito](https://github.com/keithito/tacotron/), [Prem Seetharaman](https://github.com/pseeth/pytorch-stft) as described in our code. We are inspired by [Ryuchi Yamamoto's](https://github.com/r9y9/tacotron_pytorch) Tacotron PyTorch implementation. We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan Wang and Zongheng Yang.