|
|
- import numpy as np
-
-
- class ScheduledOptim():
- ''' A simple wrapper class for learning rate scheduling '''
-
- def __init__(self, optimizer, d_model, n_warmup_steps, current_steps):
- self._optimizer = optimizer
- self.n_warmup_steps = n_warmup_steps
- self.n_current_steps = current_steps
- self.init_lr = np.power(d_model, -0.5)
-
- def step_and_update_lr_frozen(self, learning_rate_frozen):
- for param_group in self._optimizer.param_groups:
- param_group['lr'] = learning_rate_frozen
- self._optimizer.step()
-
- def step_and_update_lr(self):
- self._update_learning_rate()
- self._optimizer.step()
-
- def get_learning_rate(self):
- learning_rate = 0.0
- for param_group in self._optimizer.param_groups:
- learning_rate = param_group['lr']
-
- return learning_rate
-
- def zero_grad(self):
- # print(self.init_lr)
- self._optimizer.zero_grad()
-
- def _get_lr_scale(self):
- return np.min([
- np.power(self.n_current_steps, -0.5),
- np.power(self.n_warmup_steps, -1.5) * self.n_current_steps])
-
- def _update_learning_rate(self):
- ''' Learning rate scheduling per step '''
- self.n_current_steps += 1
- lr = self.init_lr * self._get_lr_scale()
-
- for param_group in self._optimizer.param_groups:
- param_group['lr'] = lr
|