import numpy as np
|
|
|
|
|
|
class ScheduledOptim():
|
|
''' A simple wrapper class for learning rate scheduling '''
|
|
|
|
def __init__(self, optimizer, d_model, n_warmup_steps, current_steps):
|
|
self._optimizer = optimizer
|
|
self.n_warmup_steps = n_warmup_steps
|
|
self.n_current_steps = current_steps
|
|
self.init_lr = np.power(d_model, -0.5)
|
|
|
|
def step_and_update_lr_frozen(self, learning_rate_frozen):
|
|
for param_group in self._optimizer.param_groups:
|
|
param_group['lr'] = learning_rate_frozen
|
|
self._optimizer.step()
|
|
|
|
def step_and_update_lr(self):
|
|
self._update_learning_rate()
|
|
self._optimizer.step()
|
|
|
|
def get_learning_rate(self):
|
|
learning_rate = 0.0
|
|
for param_group in self._optimizer.param_groups:
|
|
learning_rate = param_group['lr']
|
|
|
|
return learning_rate
|
|
|
|
def zero_grad(self):
|
|
# print(self.init_lr)
|
|
self._optimizer.zero_grad()
|
|
|
|
def _get_lr_scale(self):
|
|
return np.min([
|
|
np.power(self.n_current_steps, -0.5),
|
|
np.power(self.n_warmup_steps, -1.5) * self.n_current_steps])
|
|
|
|
def _update_learning_rate(self):
|
|
''' Learning rate scheduling per step '''
|
|
self.n_current_steps += 1
|
|
lr = self.init_lr * self._get_lr_scale()
|
|
|
|
for param_group in self._optimizer.param_groups:
|
|
param_group['lr'] = lr
|