|
|
- # *****************************************************************************
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are met:
- # * Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # * Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- # * Neither the name of the NVIDIA CORPORATION nor the
- # names of its contributors may be used to endorse or promote products
- # derived from this software without specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
- # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- #
- # *****************************************************************************\
- # from tacotron2.layers import TacotronSTFT
- import os
- import random
- import argparse
- import json
- import torch
- import torch.utils.data
- import sys
- from scipy.io.wavfile import read
-
- # We're using the audio processing from TacoTron2 to make sure it matches
- sys.path.insert(0, 'tacotron2')
-
- MAX_WAV_VALUE = 32768.0
-
-
- def files_to_list(filename):
- """
- Takes a text file of filenames and makes a list of filenames
- """
- with open(filename, encoding='utf-8') as f:
- files = f.readlines()
-
- files = [f.rstrip() for f in files]
- return files
-
-
- # def load_wav_to_torch(full_path):
- # """
- # Loads wavdata into torch array
- # """
- # sampling_rate, data = read(full_path)
- # return torch.from_numpy(data).float(), sampling_rate
-
-
- # class Mel2Samp(torch.utils.data.Dataset):
- # """
- # This is the main class that calculates the spectrogram and returns the
- # spectrogram, audio pair.
- # """
-
- # def __init__(self, training_files, segment_length, filter_length,
- # hop_length, win_length, sampling_rate, mel_fmin, mel_fmax):
- # self.audio_files = files_to_list(training_files)
- # random.seed(1234)
- # random.shuffle(self.audio_files)
- # self.stft = TacotronSTFT(filter_length=filter_length,
- # hop_length=hop_length,
- # win_length=win_length,
- # sampling_rate=sampling_rate,
- # mel_fmin=mel_fmin, mel_fmax=mel_fmax)
- # self.segment_length = segment_length
- # self.sampling_rate = sampling_rate
-
- # def get_mel(self, audio):
- # audio_norm = audio / MAX_WAV_VALUE
- # audio_norm = audio_norm.unsqueeze(0)
- # audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
- # melspec = self.stft.mel_spectrogram(audio_norm)
- # melspec = torch.squeeze(melspec, 0)
- # return melspec
-
- # def __getitem__(self, index):
- # # Read audio
- # filename = self.audio_files[index]
- # audio, sampling_rate = load_wav_to_torch(filename)
- # if sampling_rate != self.sampling_rate:
- # raise ValueError("{} SR doesn't match target {} SR".format(
- # sampling_rate, self.sampling_rate))
-
- # # Take segment
- # if audio.size(0) >= self.segment_length:
- # max_audio_start = audio.size(0) - self.segment_length
- # audio_start = random.randint(0, max_audio_start)
- # audio = audio[audio_start:audio_start+self.segment_length]
- # else:
- # audio = torch.nn.functional.pad(
- # audio, (0, self.segment_length - audio.size(0)), 'constant').data
-
- # mel = self.get_mel(audio)
- # audio = audio / MAX_WAV_VALUE
-
- # return (mel, audio)
-
- # def __len__(self):
- # return len(self.audio_files)
-
-
- # # ===================================================================
- # # Takes directory of clean audio and makes directory of spectrograms
- # # Useful for making test sets
- # # ===================================================================
- # if __name__ == "__main__":
- # # Get defaults so it can work with no Sacred
- # parser = argparse.ArgumentParser()
- # parser.add_argument('-f', "--filelist_path", required=True)
- # parser.add_argument('-c', '--config', type=str,
- # help='JSON file for configuration')
- # parser.add_argument('-o', '--output_dir', type=str,
- # help='Output directory')
- # args = parser.parse_args()
-
- # with open(args.config) as f:
- # data = f.read()
- # data_config = json.loads(data)["data_config"]
- # mel2samp = Mel2Samp(**data_config)
-
- # filepaths = files_to_list(args.filelist_path)
-
- # # Make directory if it doesn't exist
- # if not os.path.isdir(args.output_dir):
- # os.makedirs(args.output_dir)
- # os.chmod(args.output_dir, 0o775)
-
- # for filepath in filepaths:
- # audio, sr = load_wav_to_torch(filepath)
- # melspectrogram = mel2samp.get_mel(audio)
- # filename = os.path.basename(filepath)
- # new_filepath = args.output_dir + '/' + filename + '.pt'
- # print(new_filepath)
- # torch.save(melspectrogram, new_filepath)
|