|
# *****************************************************************************
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
# * Redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer.
|
|
# * Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution.
|
|
# * Neither the name of the NVIDIA CORPORATION nor the
|
|
# names of its contributors may be used to endorse or promote products
|
|
# derived from this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
|
|
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
# *****************************************************************************\
|
|
# from tacotron2.layers import TacotronSTFT
|
|
import os
|
|
import random
|
|
import argparse
|
|
import json
|
|
import torch
|
|
import torch.utils.data
|
|
import sys
|
|
from scipy.io.wavfile import read
|
|
|
|
# We're using the audio processing from TacoTron2 to make sure it matches
|
|
sys.path.insert(0, 'tacotron2')
|
|
|
|
MAX_WAV_VALUE = 32768.0
|
|
|
|
|
|
def files_to_list(filename):
|
|
"""
|
|
Takes a text file of filenames and makes a list of filenames
|
|
"""
|
|
with open(filename, encoding='utf-8') as f:
|
|
files = f.readlines()
|
|
|
|
files = [f.rstrip() for f in files]
|
|
return files
|
|
|
|
|
|
# def load_wav_to_torch(full_path):
|
|
# """
|
|
# Loads wavdata into torch array
|
|
# """
|
|
# sampling_rate, data = read(full_path)
|
|
# return torch.from_numpy(data).float(), sampling_rate
|
|
|
|
|
|
# class Mel2Samp(torch.utils.data.Dataset):
|
|
# """
|
|
# This is the main class that calculates the spectrogram and returns the
|
|
# spectrogram, audio pair.
|
|
# """
|
|
|
|
# def __init__(self, training_files, segment_length, filter_length,
|
|
# hop_length, win_length, sampling_rate, mel_fmin, mel_fmax):
|
|
# self.audio_files = files_to_list(training_files)
|
|
# random.seed(1234)
|
|
# random.shuffle(self.audio_files)
|
|
# self.stft = TacotronSTFT(filter_length=filter_length,
|
|
# hop_length=hop_length,
|
|
# win_length=win_length,
|
|
# sampling_rate=sampling_rate,
|
|
# mel_fmin=mel_fmin, mel_fmax=mel_fmax)
|
|
# self.segment_length = segment_length
|
|
# self.sampling_rate = sampling_rate
|
|
|
|
# def get_mel(self, audio):
|
|
# audio_norm = audio / MAX_WAV_VALUE
|
|
# audio_norm = audio_norm.unsqueeze(0)
|
|
# audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
|
|
# melspec = self.stft.mel_spectrogram(audio_norm)
|
|
# melspec = torch.squeeze(melspec, 0)
|
|
# return melspec
|
|
|
|
# def __getitem__(self, index):
|
|
# # Read audio
|
|
# filename = self.audio_files[index]
|
|
# audio, sampling_rate = load_wav_to_torch(filename)
|
|
# if sampling_rate != self.sampling_rate:
|
|
# raise ValueError("{} SR doesn't match target {} SR".format(
|
|
# sampling_rate, self.sampling_rate))
|
|
|
|
# # Take segment
|
|
# if audio.size(0) >= self.segment_length:
|
|
# max_audio_start = audio.size(0) - self.segment_length
|
|
# audio_start = random.randint(0, max_audio_start)
|
|
# audio = audio[audio_start:audio_start+self.segment_length]
|
|
# else:
|
|
# audio = torch.nn.functional.pad(
|
|
# audio, (0, self.segment_length - audio.size(0)), 'constant').data
|
|
|
|
# mel = self.get_mel(audio)
|
|
# audio = audio / MAX_WAV_VALUE
|
|
|
|
# return (mel, audio)
|
|
|
|
# def __len__(self):
|
|
# return len(self.audio_files)
|
|
|
|
|
|
# # ===================================================================
|
|
# # Takes directory of clean audio and makes directory of spectrograms
|
|
# # Useful for making test sets
|
|
# # ===================================================================
|
|
# if __name__ == "__main__":
|
|
# # Get defaults so it can work with no Sacred
|
|
# parser = argparse.ArgumentParser()
|
|
# parser.add_argument('-f', "--filelist_path", required=True)
|
|
# parser.add_argument('-c', '--config', type=str,
|
|
# help='JSON file for configuration')
|
|
# parser.add_argument('-o', '--output_dir', type=str,
|
|
# help='Output directory')
|
|
# args = parser.parse_args()
|
|
|
|
# with open(args.config) as f:
|
|
# data = f.read()
|
|
# data_config = json.loads(data)["data_config"]
|
|
# mel2samp = Mel2Samp(**data_config)
|
|
|
|
# filepaths = files_to_list(args.filelist_path)
|
|
|
|
# # Make directory if it doesn't exist
|
|
# if not os.path.isdir(args.output_dir):
|
|
# os.makedirs(args.output_dir)
|
|
# os.chmod(args.output_dir, 0o775)
|
|
|
|
# for filepath in filepaths:
|
|
# audio, sr = load_wav_to_torch(filepath)
|
|
# melspectrogram = mel2samp.get_mel(audio)
|
|
# filename = os.path.basename(filepath)
|
|
# new_filepath = args.output_dir + '/' + filename + '.pt'
|
|
# print(new_filepath)
|
|
# torch.save(melspectrogram, new_filepath)
|