Fork of https://github.com/alokprasad/fastspeech_squeezewave to also fix denoising in squeezewave
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

147 lines
5.9 KiB

# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************\
# from tacotron2.layers import TacotronSTFT
import os
import random
import argparse
import json
import torch
import torch.utils.data
import sys
from scipy.io.wavfile import read
# We're using the audio processing from TacoTron2 to make sure it matches
sys.path.insert(0, 'tacotron2')
MAX_WAV_VALUE = 32768.0
def files_to_list(filename):
"""
Takes a text file of filenames and makes a list of filenames
"""
with open(filename, encoding='utf-8') as f:
files = f.readlines()
files = [f.rstrip() for f in files]
return files
# def load_wav_to_torch(full_path):
# """
# Loads wavdata into torch array
# """
# sampling_rate, data = read(full_path)
# return torch.from_numpy(data).float(), sampling_rate
# class Mel2Samp(torch.utils.data.Dataset):
# """
# This is the main class that calculates the spectrogram and returns the
# spectrogram, audio pair.
# """
# def __init__(self, training_files, segment_length, filter_length,
# hop_length, win_length, sampling_rate, mel_fmin, mel_fmax):
# self.audio_files = files_to_list(training_files)
# random.seed(1234)
# random.shuffle(self.audio_files)
# self.stft = TacotronSTFT(filter_length=filter_length,
# hop_length=hop_length,
# win_length=win_length,
# sampling_rate=sampling_rate,
# mel_fmin=mel_fmin, mel_fmax=mel_fmax)
# self.segment_length = segment_length
# self.sampling_rate = sampling_rate
# def get_mel(self, audio):
# audio_norm = audio / MAX_WAV_VALUE
# audio_norm = audio_norm.unsqueeze(0)
# audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
# melspec = self.stft.mel_spectrogram(audio_norm)
# melspec = torch.squeeze(melspec, 0)
# return melspec
# def __getitem__(self, index):
# # Read audio
# filename = self.audio_files[index]
# audio, sampling_rate = load_wav_to_torch(filename)
# if sampling_rate != self.sampling_rate:
# raise ValueError("{} SR doesn't match target {} SR".format(
# sampling_rate, self.sampling_rate))
# # Take segment
# if audio.size(0) >= self.segment_length:
# max_audio_start = audio.size(0) - self.segment_length
# audio_start = random.randint(0, max_audio_start)
# audio = audio[audio_start:audio_start+self.segment_length]
# else:
# audio = torch.nn.functional.pad(
# audio, (0, self.segment_length - audio.size(0)), 'constant').data
# mel = self.get_mel(audio)
# audio = audio / MAX_WAV_VALUE
# return (mel, audio)
# def __len__(self):
# return len(self.audio_files)
# # ===================================================================
# # Takes directory of clean audio and makes directory of spectrograms
# # Useful for making test sets
# # ===================================================================
# if __name__ == "__main__":
# # Get defaults so it can work with no Sacred
# parser = argparse.ArgumentParser()
# parser.add_argument('-f', "--filelist_path", required=True)
# parser.add_argument('-c', '--config', type=str,
# help='JSON file for configuration')
# parser.add_argument('-o', '--output_dir', type=str,
# help='Output directory')
# args = parser.parse_args()
# with open(args.config) as f:
# data = f.read()
# data_config = json.loads(data)["data_config"]
# mel2samp = Mel2Samp(**data_config)
# filepaths = files_to_list(args.filelist_path)
# # Make directory if it doesn't exist
# if not os.path.isdir(args.output_dir):
# os.makedirs(args.output_dir)
# os.chmod(args.output_dir, 0o775)
# for filepath in filepaths:
# audio, sr = load_wav_to_torch(filepath)
# melspectrogram = mel2samp.get_mel(audio)
# filename = os.path.basename(filepath)
# new_filepath = args.output_dir + '/' + filename + '.pt'
# print(new_filepath)
# torch.save(melspectrogram, new_filepath)