Fork of https://github.com/alokprasad/fastspeech_squeezewave to also fix denoising in squeezewave
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

89 lines
2.5 KiB

  1. """ from https://github.com/keithito/tacotron """
  2. '''
  3. Cleaners are transformations that run over the input text at both training and eval time.
  4. Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
  5. hyperparameter. Some cleaners are English-specific. You'll typically want to use:
  6. 1. "english_cleaners" for English text
  7. 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
  8. the Unidecode library (https://pypi.python.org/pypi/Unidecode)
  9. 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
  10. the symbols in symbols.py to match your data).
  11. '''
  12. # Regular expression matching whitespace:
  13. import re
  14. from unidecode import unidecode
  15. from .numbers import normalize_numbers
  16. _whitespace_re = re.compile(r'\s+')
  17. # List of (regular expression, replacement) pairs for abbreviations:
  18. _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
  19. ('mrs', 'misess'),
  20. ('mr', 'mister'),
  21. ('dr', 'doctor'),
  22. ('st', 'saint'),
  23. ('co', 'company'),
  24. ('jr', 'junior'),
  25. ('maj', 'major'),
  26. ('gen', 'general'),
  27. ('drs', 'doctors'),
  28. ('rev', 'reverend'),
  29. ('lt', 'lieutenant'),
  30. ('hon', 'honorable'),
  31. ('sgt', 'sergeant'),
  32. ('capt', 'captain'),
  33. ('esq', 'esquire'),
  34. ('ltd', 'limited'),
  35. ('col', 'colonel'),
  36. ('ft', 'fort'),
  37. ]]
  38. def expand_abbreviations(text):
  39. for regex, replacement in _abbreviations:
  40. text = re.sub(regex, replacement, text)
  41. return text
  42. def expand_numbers(text):
  43. return normalize_numbers(text)
  44. def lowercase(text):
  45. return text.lower()
  46. def collapse_whitespace(text):
  47. return re.sub(_whitespace_re, ' ', text)
  48. def convert_to_ascii(text):
  49. return unidecode(text)
  50. def basic_cleaners(text):
  51. '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
  52. text = lowercase(text)
  53. text = collapse_whitespace(text)
  54. return text
  55. def transliteration_cleaners(text):
  56. '''Pipeline for non-English text that transliterates to ASCII.'''
  57. text = convert_to_ascii(text)
  58. text = lowercase(text)
  59. text = collapse_whitespace(text)
  60. return text
  61. def english_cleaners(text):
  62. '''Pipeline for English text, including number and abbreviation expansion.'''
  63. text = convert_to_ascii(text)
  64. text = lowercase(text)
  65. text = expand_numbers(text)
  66. text = expand_abbreviations(text)
  67. text = collapse_whitespace(text)
  68. return text