|
|
- import torch
- import numpy as np
- import transformer.Constants as Constants
-
-
- class Beam():
- ''' Beam search '''
-
- def __init__(self, size, device=False):
-
- self.size = size
- self._done = False
-
- # The score for each translation on the beam.
- self.scores = torch.zeros((size,), dtype=torch.float, device=device)
- self.all_scores = []
-
- # The backpointers at each time-step.
- self.prev_ks = []
-
- # The outputs at each time-step.
- self.next_ys = [torch.full(
- (size,), Constants.PAD, dtype=torch.long, device=device)]
- self.next_ys[0][0] = Constants.BOS
-
- def get_current_state(self):
- "Get the outputs for the current timestep."
- return self.get_tentative_hypothesis()
-
- def get_current_origin(self):
- "Get the backpointers for the current timestep."
- return self.prev_ks[-1]
-
- @property
- def done(self):
- return self._done
-
- def advance(self, word_prob):
- "Update beam status and check if finished or not."
- num_words = word_prob.size(1)
-
- # Sum the previous scores.
- if len(self.prev_ks) > 0:
- beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)
- else:
- beam_lk = word_prob[0]
-
- flat_beam_lk = beam_lk.view(-1)
-
- best_scores, best_scores_id = flat_beam_lk.topk(
- self.size, 0, True, True) # 1st sort
- best_scores, best_scores_id = flat_beam_lk.topk(
- self.size, 0, True, True) # 2nd sort
-
- self.all_scores.append(self.scores)
- self.scores = best_scores
-
- # bestScoresId is flattened as a (beam x word) array,
- # so we need to calculate which word and beam each score came from
- prev_k = best_scores_id / num_words
- self.prev_ks.append(prev_k)
- self.next_ys.append(best_scores_id - prev_k * num_words)
-
- # End condition is when top-of-beam is EOS.
- if self.next_ys[-1][0].item() == Constants.EOS:
- self._done = True
- self.all_scores.append(self.scores)
-
- return self._done
-
- def sort_scores(self):
- "Sort the scores."
- return torch.sort(self.scores, 0, True)
-
- def get_the_best_score_and_idx(self):
- "Get the score of the best in the beam."
- scores, ids = self.sort_scores()
- return scores[1], ids[1]
-
- def get_tentative_hypothesis(self):
- "Get the decoded sequence for the current timestep."
-
- if len(self.next_ys) == 1:
- dec_seq = self.next_ys[0].unsqueeze(1)
- else:
- _, keys = self.sort_scores()
- hyps = [self.get_hypothesis(k) for k in keys]
- hyps = [[Constants.BOS] + h for h in hyps]
- dec_seq = torch.LongTensor(hyps)
-
- return dec_seq
-
- def get_hypothesis(self, k):
- """ Walk back to construct the full hypothesis. """
- hyp = []
- for j in range(len(self.prev_ks) - 1, -1, -1):
- hyp.append(self.next_ys[j+1][k])
- k = self.prev_ks[j][k]
-
- return list(map(lambda x: x.item(), hyp[::-1]))
|