You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

60 lines
1.9 KiB

import torch
import torch.nn as nn
import numpy as np
import models
import pickle
import time
start_time = time.time()
PAD = "<pad>"
BOS = "<bos>"
EOS = "<eos>"
word2idx = pickle.load(open("word2idx.pkl", "rb"))
wordvecs = pickle.load(open("wordvecs.pkl", "rb"))
slots = pickle.load(open("slots.pkl", "rb"))
intents = pickle.load(open("intents.pkl", "rb"))
num_words = len(word2idx)
num_intent = 7
num_slot = 72
filter_count = 300
dropout = 0
embedding_dim = 100
def pad_query(sequence):
sequence = [word2idx[BOS]] + sequence + [word2idx[EOS]]
sequence = sequence[:50]
sequence = np.pad(sequence, (0, 50 - len(sequence)), mode='constant', constant_values=(word2idx[PAD],))
return sequence
query = "What's the weather like in Great Mills right now?"
q = query.lower().replace("'", " ").replace("?", " ").strip()
true_length = [len(q.split()), 0, 0, 0, 0, 0, 0 ,0]
qq = torch.from_numpy(pad_query([word2idx[word] for word in q.split()]))
model = models.CNNJoint(num_words, embedding_dim, num_intent, num_slot, (filter_count,), 5, dropout, wordvecs)
model.eval()
model.load_state_dict(torch.load('snips_joint', map_location=torch.device('cpu')))
criterion = torch.nn.CrossEntropyLoss(ignore_index=-1)
pad_tensor = torch.from_numpy(pad_query([word2idx[w] for w in []]))
batch = torch.stack([qq, pad_tensor, pad_tensor, pad_tensor, pad_tensor, pad_tensor, pad_tensor, pad_tensor])
pred_intent, pred_slots = model(batch)
slt = [str(item) for batch_num, sublist in enumerate(pred_slots.max(1)[1].tolist()) for item in sublist[1:true_length[batch_num] + 1]]
out_slots = [slots[int(c)] for c in slt]
itnt = pred_intent.max(1)[1].tolist()[0]
out_intent = intents[itnt]
print("Input: {}\nIntent: {}\nSlots: {}".format(query, out_intent, out_slots))
print("--- %s seconds ---" % (time.time() - start_time))