rafaelvalle 185cd24e04 | 4 years ago | |
---|---|---|
filelists | 6 years ago | |
text | 6 years ago | |
waveglow@5bc2a53e20 | 4 years ago | |
.gitmodules | 6 years ago | |
Dockerfile | 5 years ago | |
LICENSE | 6 years ago | |
README.md | 4 years ago | |
audio_processing.py | 6 years ago | |
data_utils.py | 5 years ago | |
demo.wav | 6 years ago | |
distributed.py | 5 years ago | |
hparams.py | 5 years ago | |
inference.ipynb | 5 years ago | |
layers.py | 6 years ago | |
logger.py | 4 years ago | |
loss_function.py | 6 years ago | |
loss_scaler.py | 6 years ago | |
model.py | 4 years ago | |
multiproc.py | 6 years ago | |
plotting_utils.py | 6 years ago | |
requirements.txt | 4 years ago | |
stft.py | 5 years ago | |
tensorboard.png | 6 years ago | |
train.py | 4 years ago | |
utils.py | 4 years ago |
PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions.
This implementation includes distributed and automatic mixed precision support and uses the LJSpeech dataset.
Distributed and Automatic Mixed Precision support relies on NVIDIA's Apex and AMP.
Visit our website for audio samples using our published Tacotron 2 and WaveGlow models.
git clone https://github.com/NVIDIA/tacotron2.git
cd tacotron2
git submodule init; git submodule update
sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt
load_mel_from_disk=True
in hparams.py
and update mel-spectrogram pathspip install -r requirements.txt
python train.py --output_directory=outdir --log_directory=logdir
tensorboard --logdir=outdir/logdir
Training using a pre-trained model can lead to faster convergence
By default, the dataset dependent text embedding layers are ignored
python train.py --output_directory=outdir --log_directory=logdir -c tacotron2_statedict.pt --warm_start
python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True
jupyter notebook --ip=127.0.0.1 --port=31337
N.b. When performing Mel-Spectrogram to Audio synthesis, make sure Tacotron 2 and the Mel decoder were trained on the same mel-spectrogram representation.
WaveGlow Faster than real time Flow-based Generative Network for Speech Synthesis
nv-wavenet Faster than real time WaveNet.
This implementation uses code from the following repos: Keith Ito, Prem Seetharaman as described in our code.
We are inspired by Ryuchi Yamamoto's Tacotron PyTorch implementation.
We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan Wang and Zongheng Yang.