|
|
- from math import sqrt
- import torch
- from torch.autograd import Variable
- from torch import nn
- from torch.nn import functional as F
- from layers import ConvNorm, LinearNorm
- from utils import to_gpu, get_mask_from_lengths
-
-
- class LocationLayer(nn.Module):
- def __init__(self, attention_n_filters, attention_kernel_size,
- attention_dim):
- super(LocationLayer, self).__init__()
- padding = int((attention_kernel_size - 1) / 2)
- self.location_conv = ConvNorm(2, attention_n_filters,
- kernel_size=attention_kernel_size,
- padding=padding, bias=False, stride=1,
- dilation=1)
- self.location_dense = LinearNorm(attention_n_filters, attention_dim,
- bias=False, w_init_gain='tanh')
-
- def forward(self, attention_weights_cat):
- processed_attention = self.location_conv(attention_weights_cat)
- processed_attention = processed_attention.transpose(1, 2)
- processed_attention = self.location_dense(processed_attention)
- return processed_attention
-
-
- class Attention(nn.Module):
- def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
- attention_location_n_filters, attention_location_kernel_size):
- super(Attention, self).__init__()
- self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
- bias=False, w_init_gain='tanh')
- self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
- w_init_gain='tanh')
- self.v = LinearNorm(attention_dim, 1, bias=False)
- self.location_layer = LocationLayer(attention_location_n_filters,
- attention_location_kernel_size,
- attention_dim)
- self.score_mask_value = -float("inf")
-
- def get_alignment_energies(self, query, processed_memory,
- attention_weights_cat):
- """
- PARAMS
- ------
- query: decoder output (batch, n_mel_channels * n_frames_per_step)
- processed_memory: processed encoder outputs (B, T_in, attention_dim)
- attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
-
- RETURNS
- -------
- alignment (batch, max_time)
- """
-
- processed_query = self.query_layer(query.unsqueeze(1))
- processed_attention_weights = self.location_layer(attention_weights_cat)
- energies = self.v(torch.tanh(
- processed_query + processed_attention_weights + processed_memory))
-
- energies = energies.squeeze(-1)
- return energies
-
- def forward(self, attention_hidden_state, memory, processed_memory,
- attention_weights_cat, mask):
- """
- PARAMS
- ------
- attention_hidden_state: attention rnn last output
- memory: encoder outputs
- processed_memory: processed encoder outputs
- attention_weights_cat: previous and cummulative attention weights
- mask: binary mask for padded data
- """
- alignment = self.get_alignment_energies(
- attention_hidden_state, processed_memory, attention_weights_cat)
-
- if mask is not None:
- alignment.data.masked_fill_(mask, self.score_mask_value)
-
- attention_weights = F.softmax(alignment, dim=1)
- attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
- attention_context = attention_context.squeeze(1)
-
- return attention_context, attention_weights
-
-
- class Prenet(nn.Module):
- def __init__(self, in_dim, sizes):
- super(Prenet, self).__init__()
- in_sizes = [in_dim] + sizes[:-1]
- self.layers = nn.ModuleList(
- [LinearNorm(in_size, out_size, bias=False)
- for (in_size, out_size) in zip(in_sizes, sizes)])
-
- def forward(self, x):
- for linear in self.layers:
- x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
- return x
-
-
- class Postnet(nn.Module):
- """Postnet
- - Five 1-d convolution with 512 channels and kernel size 5
- """
-
- def __init__(self, hparams):
- super(Postnet, self).__init__()
- self.convolutions = nn.ModuleList()
-
- self.convolutions.append(
- nn.Sequential(
- ConvNorm(hparams.n_mel_channels, hparams.postnet_embedding_dim,
- kernel_size=hparams.postnet_kernel_size, stride=1,
- padding=int((hparams.postnet_kernel_size - 1) / 2),
- dilation=1, w_init_gain='tanh'),
- nn.BatchNorm1d(hparams.postnet_embedding_dim))
- )
-
- for i in range(1, hparams.postnet_n_convolutions - 1):
- self.convolutions.append(
- nn.Sequential(
- ConvNorm(hparams.postnet_embedding_dim,
- hparams.postnet_embedding_dim,
- kernel_size=hparams.postnet_kernel_size, stride=1,
- padding=int((hparams.postnet_kernel_size - 1) / 2),
- dilation=1, w_init_gain='tanh'),
- nn.BatchNorm1d(hparams.postnet_embedding_dim))
- )
-
- self.convolutions.append(
- nn.Sequential(
- ConvNorm(hparams.postnet_embedding_dim, hparams.n_mel_channels,
- kernel_size=hparams.postnet_kernel_size, stride=1,
- padding=int((hparams.postnet_kernel_size - 1) / 2),
- dilation=1, w_init_gain='linear'),
- nn.BatchNorm1d(hparams.n_mel_channels))
- )
-
- def forward(self, x):
- for i in range(len(self.convolutions) - 1):
- x = F.dropout(torch.tanh(self.convolutions[i](x)), 0.5, self.training)
- x = F.dropout(self.convolutions[-1](x), 0.5, self.training)
-
- return x
-
-
- class Encoder(nn.Module):
- """Encoder module:
- - Three 1-d convolution banks
- - Bidirectional LSTM
- """
- def __init__(self, hparams):
- super(Encoder, self).__init__()
-
- convolutions = []
- for _ in range(hparams.encoder_n_convolutions):
- conv_layer = nn.Sequential(
- ConvNorm(hparams.encoder_embedding_dim,
- hparams.encoder_embedding_dim,
- kernel_size=hparams.encoder_kernel_size, stride=1,
- padding=int((hparams.encoder_kernel_size - 1) / 2),
- dilation=1, w_init_gain='relu'),
- nn.BatchNorm1d(hparams.encoder_embedding_dim))
- convolutions.append(conv_layer)
- self.convolutions = nn.ModuleList(convolutions)
-
- self.lstm = nn.LSTM(hparams.encoder_embedding_dim,
- int(hparams.encoder_embedding_dim / 2), 1,
- batch_first=True, bidirectional=True)
-
- def forward(self, x, input_lengths):
- for conv in self.convolutions:
- x = F.dropout(F.relu(conv(x)), 0.5, self.training)
-
- x = x.transpose(1, 2)
-
- # pytorch tensor are not reversible, hence the conversion
- input_lengths = input_lengths.cpu().numpy()
- x = nn.utils.rnn.pack_padded_sequence(
- x, input_lengths, batch_first=True)
-
- self.lstm.flatten_parameters()
- outputs, _ = self.lstm(x)
-
- outputs, _ = nn.utils.rnn.pad_packed_sequence(
- outputs, batch_first=True)
-
- return outputs
-
- def inference(self, x):
- for conv in self.convolutions:
- x = F.dropout(F.relu(conv(x)), 0.5, self.training)
-
- x = x.transpose(1, 2)
-
- self.lstm.flatten_parameters()
- outputs, _ = self.lstm(x)
-
- return outputs
-
-
- class Decoder(nn.Module):
- def __init__(self, hparams):
- super(Decoder, self).__init__()
- self.n_mel_channels = hparams.n_mel_channels
- self.n_frames_per_step = hparams.n_frames_per_step
- self.encoder_embedding_dim = hparams.encoder_embedding_dim
- self.attention_rnn_dim = hparams.attention_rnn_dim
- self.decoder_rnn_dim = hparams.decoder_rnn_dim
- self.prenet_dim = hparams.prenet_dim
- self.max_decoder_steps = hparams.max_decoder_steps
- self.gate_threshold = hparams.gate_threshold
- self.p_attention_dropout = hparams.p_attention_dropout
- self.p_decoder_dropout = hparams.p_decoder_dropout
-
- self.prenet = Prenet(
- hparams.n_mel_channels * hparams.n_frames_per_step,
- [hparams.prenet_dim, hparams.prenet_dim])
-
- self.attention_rnn = nn.LSTMCell(
- hparams.prenet_dim + hparams.encoder_embedding_dim,
- hparams.attention_rnn_dim)
-
- self.attention_layer = Attention(
- hparams.attention_rnn_dim, hparams.encoder_embedding_dim,
- hparams.attention_dim, hparams.attention_location_n_filters,
- hparams.attention_location_kernel_size)
-
- self.decoder_rnn = nn.LSTMCell(
- hparams.attention_rnn_dim + hparams.encoder_embedding_dim,
- hparams.decoder_rnn_dim, 1)
-
- self.linear_projection = LinearNorm(
- hparams.decoder_rnn_dim + hparams.encoder_embedding_dim,
- hparams.n_mel_channels * hparams.n_frames_per_step)
-
- self.gate_layer = LinearNorm(
- hparams.decoder_rnn_dim + hparams.encoder_embedding_dim, 1,
- bias=True, w_init_gain='sigmoid')
-
- def get_go_frame(self, memory):
- """ Gets all zeros frames to use as first decoder input
- PARAMS
- ------
- memory: decoder outputs
-
- RETURNS
- -------
- decoder_input: all zeros frames
- """
- B = memory.size(0)
- decoder_input = Variable(memory.data.new(
- B, self.n_mel_channels * self.n_frames_per_step).zero_())
- return decoder_input
-
- def initialize_decoder_states(self, memory, mask):
- """ Initializes attention rnn states, decoder rnn states, attention
- weights, attention cumulative weights, attention context, stores memory
- and stores processed memory
- PARAMS
- ------
- memory: Encoder outputs
- mask: Mask for padded data if training, expects None for inference
- """
- B = memory.size(0)
- MAX_TIME = memory.size(1)
-
- self.attention_hidden = Variable(memory.data.new(
- B, self.attention_rnn_dim).zero_())
- self.attention_cell = Variable(memory.data.new(
- B, self.attention_rnn_dim).zero_())
-
- self.decoder_hidden = Variable(memory.data.new(
- B, self.decoder_rnn_dim).zero_())
- self.decoder_cell = Variable(memory.data.new(
- B, self.decoder_rnn_dim).zero_())
-
- self.attention_weights = Variable(memory.data.new(
- B, MAX_TIME).zero_())
- self.attention_weights_cum = Variable(memory.data.new(
- B, MAX_TIME).zero_())
- self.attention_context = Variable(memory.data.new(
- B, self.encoder_embedding_dim).zero_())
-
- self.memory = memory
- self.processed_memory = self.attention_layer.memory_layer(memory)
- self.mask = mask
-
- def parse_decoder_inputs(self, decoder_inputs):
- """ Prepares decoder inputs, i.e. mel outputs
- PARAMS
- ------
- decoder_inputs: inputs used for teacher-forced training, i.e. mel-specs
-
- RETURNS
- -------
- inputs: processed decoder inputs
-
- """
- # (B, n_mel_channels, T_out) -> (B, T_out, n_mel_channels)
- decoder_inputs = decoder_inputs.transpose(1, 2)
- decoder_inputs = decoder_inputs.view(
- decoder_inputs.size(0),
- int(decoder_inputs.size(1)/self.n_frames_per_step), -1)
- # (B, T_out, n_mel_channels) -> (T_out, B, n_mel_channels)
- decoder_inputs = decoder_inputs.transpose(0, 1)
- return decoder_inputs
-
- def parse_decoder_outputs(self, mel_outputs, gate_outputs, alignments):
- """ Prepares decoder outputs for output
- PARAMS
- ------
- mel_outputs:
- gate_outputs: gate output energies
- alignments:
-
- RETURNS
- -------
- mel_outputs:
- gate_outpust: gate output energies
- alignments:
- """
- # (T_out, B) -> (B, T_out)
- alignments = torch.stack(alignments).transpose(0, 1)
- # (T_out, B) -> (B, T_out)
- gate_outputs = torch.stack(gate_outputs).transpose(0, 1)
- gate_outputs = gate_outputs.contiguous()
- # (T_out, B, n_mel_channels) -> (B, T_out, n_mel_channels)
- mel_outputs = torch.stack(mel_outputs).transpose(0, 1).contiguous()
- # decouple frames per step
- mel_outputs = mel_outputs.view(
- mel_outputs.size(0), -1, self.n_mel_channels)
- # (B, T_out, n_mel_channels) -> (B, n_mel_channels, T_out)
- mel_outputs = mel_outputs.transpose(1, 2)
-
- return mel_outputs, gate_outputs, alignments
-
- def decode(self, decoder_input):
- """ Decoder step using stored states, attention and memory
- PARAMS
- ------
- decoder_input: previous mel output
-
- RETURNS
- -------
- mel_output:
- gate_output: gate output energies
- attention_weights:
- """
- cell_input = torch.cat((decoder_input, self.attention_context), -1)
- self.attention_hidden, self.attention_cell = self.attention_rnn(
- cell_input, (self.attention_hidden, self.attention_cell))
- self.attention_hidden = F.dropout(
- self.attention_hidden, self.p_attention_dropout, self.training)
-
- attention_weights_cat = torch.cat(
- (self.attention_weights.unsqueeze(1),
- self.attention_weights_cum.unsqueeze(1)), dim=1)
- self.attention_context, self.attention_weights = self.attention_layer(
- self.attention_hidden, self.memory, self.processed_memory,
- attention_weights_cat, self.mask)
-
- self.attention_weights_cum += self.attention_weights
- decoder_input = torch.cat(
- (self.attention_hidden, self.attention_context), -1)
- self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
- decoder_input, (self.decoder_hidden, self.decoder_cell))
- self.decoder_hidden = F.dropout(
- self.decoder_hidden, self.p_decoder_dropout, self.training)
-
- decoder_hidden_attention_context = torch.cat(
- (self.decoder_hidden, self.attention_context), dim=1)
- decoder_output = self.linear_projection(
- decoder_hidden_attention_context)
-
- gate_prediction = self.gate_layer(decoder_hidden_attention_context)
- return decoder_output, gate_prediction, self.attention_weights
-
- def forward(self, memory, decoder_inputs, memory_lengths):
- """ Decoder forward pass for training
- PARAMS
- ------
- memory: Encoder outputs
- decoder_inputs: Decoder inputs for teacher forcing. i.e. mel-specs
- memory_lengths: Encoder output lengths for attention masking.
-
- RETURNS
- -------
- mel_outputs: mel outputs from the decoder
- gate_outputs: gate outputs from the decoder
- alignments: sequence of attention weights from the decoder
- """
-
- decoder_input = self.get_go_frame(memory).unsqueeze(0)
- decoder_inputs = self.parse_decoder_inputs(decoder_inputs)
- decoder_inputs = torch.cat((decoder_input, decoder_inputs), dim=0)
- decoder_inputs = self.prenet(decoder_inputs)
-
- self.initialize_decoder_states(
- memory, mask=~get_mask_from_lengths(memory_lengths))
-
- mel_outputs, gate_outputs, alignments = [], [], []
- while len(mel_outputs) < decoder_inputs.size(0) - 1:
- decoder_input = decoder_inputs[len(mel_outputs)]
- mel_output, gate_output, attention_weights = self.decode(
- decoder_input)
- mel_outputs += [mel_output.squeeze(1)]
- gate_outputs += [gate_output.squeeze(1)]
- alignments += [attention_weights]
-
- mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
- mel_outputs, gate_outputs, alignments)
-
- return mel_outputs, gate_outputs, alignments
-
- def inference(self, memory):
- """ Decoder inference
- PARAMS
- ------
- memory: Encoder outputs
-
- RETURNS
- -------
- mel_outputs: mel outputs from the decoder
- gate_outputs: gate outputs from the decoder
- alignments: sequence of attention weights from the decoder
- """
- decoder_input = self.get_go_frame(memory)
-
- self.initialize_decoder_states(memory, mask=None)
-
- mel_outputs, gate_outputs, alignments = [], [], []
- while True:
- decoder_input = self.prenet(decoder_input)
- mel_output, gate_output, alignment = self.decode(decoder_input)
-
- mel_outputs += [mel_output.squeeze(1)]
- gate_outputs += [gate_output]
- alignments += [alignment]
-
- if torch.sigmoid(gate_output.data) > self.gate_threshold:
- break
- elif len(mel_outputs) == self.max_decoder_steps:
- print("Warning! Reached max decoder steps")
- break
-
- decoder_input = mel_output
-
- mel_outputs, gate_outputs, alignments = self.parse_decoder_outputs(
- mel_outputs, gate_outputs, alignments)
-
- return mel_outputs, gate_outputs, alignments
-
-
- class Tacotron2(nn.Module):
- def __init__(self, hparams):
- super(Tacotron2, self).__init__()
- self.mask_padding = hparams.mask_padding
- self.fp16_run = hparams.fp16_run
- self.n_mel_channels = hparams.n_mel_channels
- self.n_frames_per_step = hparams.n_frames_per_step
- self.embedding = nn.Embedding(
- hparams.n_symbols, hparams.symbols_embedding_dim)
- std = sqrt(2.0 / (hparams.n_symbols + hparams.symbols_embedding_dim))
- val = sqrt(3.0) * std # uniform bounds for std
- self.embedding.weight.data.uniform_(-val, val)
- self.encoder = Encoder(hparams)
- self.decoder = Decoder(hparams)
- self.postnet = Postnet(hparams)
-
- def parse_batch(self, batch):
- text_padded, input_lengths, mel_padded, gate_padded, \
- output_lengths = batch
- text_padded = to_gpu(text_padded).long()
- input_lengths = to_gpu(input_lengths).long()
- max_len = torch.max(input_lengths.data).item()
- mel_padded = to_gpu(mel_padded).float()
- gate_padded = to_gpu(gate_padded).float()
- output_lengths = to_gpu(output_lengths).long()
-
- return (
- (text_padded, input_lengths, mel_padded, max_len, output_lengths),
- (mel_padded, gate_padded))
-
- def parse_output(self, outputs, output_lengths=None):
- if self.mask_padding and output_lengths is not None:
- mask = ~get_mask_from_lengths(output_lengths)
- mask = mask.expand(self.n_mel_channels, mask.size(0), mask.size(1))
- mask = mask.permute(1, 0, 2)
-
- outputs[0].data.masked_fill_(mask, 0.0)
- outputs[1].data.masked_fill_(mask, 0.0)
- outputs[2].data.masked_fill_(mask[:, 0, :], 1e3) # gate energies
-
- return outputs
-
- def forward(self, inputs):
- text_inputs, text_lengths, mels, max_len, output_lengths = inputs
- text_lengths, output_lengths = text_lengths.data, output_lengths.data
-
- embedded_inputs = self.embedding(text_inputs).transpose(1, 2)
-
- encoder_outputs = self.encoder(embedded_inputs, text_lengths)
-
- mel_outputs, gate_outputs, alignments = self.decoder(
- encoder_outputs, mels, memory_lengths=text_lengths)
-
- mel_outputs_postnet = self.postnet(mel_outputs)
- mel_outputs_postnet = mel_outputs + mel_outputs_postnet
-
- return self.parse_output(
- [mel_outputs, mel_outputs_postnet, gate_outputs, alignments],
- output_lengths)
-
- def inference(self, inputs):
- embedded_inputs = self.embedding(inputs).transpose(1, 2)
- encoder_outputs = self.encoder.inference(embedded_inputs)
- mel_outputs, gate_outputs, alignments = self.decoder.inference(
- encoder_outputs)
-
- mel_outputs_postnet = self.postnet(mel_outputs)
- mel_outputs_postnet = mel_outputs + mel_outputs_postnet
-
- outputs = self.parse_output(
- [mel_outputs, mel_outputs_postnet, gate_outputs, alignments])
-
- return outputs
|