|
|
- import random
- import numpy as np
- import torch
- import torch.utils.data
-
- import layers
- from utils import load_wav_to_torch, load_filepaths_and_text
- from text import text_to_sequence
-
-
- class TextMelLoader(torch.utils.data.Dataset):
- """
- 1) loads audio,text pairs
- 2) normalizes text and converts them to sequences of one-hot vectors
- 3) computes mel-spectrograms from audio files.
- """
- def __init__(self, audiopaths_and_text, hparams, shuffle=True):
- self.audiopaths_and_text = load_filepaths_and_text(
- audiopaths_and_text, hparams.sort_by_length)
- self.text_cleaners = hparams.text_cleaners
- self.max_wav_value = hparams.max_wav_value
- self.sampling_rate = hparams.sampling_rate
- self.load_mel_from_disk = hparams.load_mel_from_disk
- self.stft = layers.TacotronSTFT(
- hparams.filter_length, hparams.hop_length, hparams.win_length,
- hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
- hparams.mel_fmax)
- random.seed(1234)
- if shuffle:
- random.shuffle(self.audiopaths_and_text)
-
- def get_mel_text_pair(self, audiopath_and_text):
- # separate filename and text
- audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
- text = self.get_text(text)
- mel = self.get_mel(audiopath)
- return (text, mel)
-
- def get_mel(self, filename):
- if not self.load_mel_from_disk:
- audio = load_wav_to_torch(filename, self.sampling_rate)
- audio_norm = audio / self.max_wav_value
- audio_norm = audio_norm.unsqueeze(0)
- audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
- melspec = self.stft.mel_spectrogram(audio_norm)
- melspec = torch.squeeze(melspec, 0)
- else:
- melspec = torch.from_numpy(np.load(filename))
- assert melspec.size(0) == self.stft.n_mel_channels, (
- 'Mel dimension mismatch: given {}, expected {}'.format(
- melspec.size(0), self.stft.n_mel_channels))
-
- return melspec
-
- def get_text(self, text):
- text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
- return text_norm
-
- def __getitem__(self, index):
- return self.get_mel_text_pair(self.audiopaths_and_text[index])
-
- def __len__(self):
- return len(self.audiopaths_and_text)
-
-
- class TextMelCollate():
- """ Zero-pads model inputs and targets based on number of frames per setep
- """
- def __init__(self, n_frames_per_step):
- self.n_frames_per_step = n_frames_per_step
-
- def __call__(self, batch):
- """Collate's training batch from normalized text and mel-spectrogram
- PARAMS
- ------
- batch: [text_normalized, mel_normalized]
- """
- # Right zero-pad all one-hot text sequences to max input length
- input_lengths, ids_sorted_decreasing = torch.sort(
- torch.LongTensor([len(x[0]) for x in batch]),
- dim=0, descending=True)
- max_input_len = input_lengths[0]
-
- text_padded = torch.LongTensor(len(batch), max_input_len)
- text_padded.zero_()
- for i in range(len(ids_sorted_decreasing)):
- text = batch[ids_sorted_decreasing[i]][0]
- text_padded[i, :text.size(0)] = text
-
- # Right zero-pad mel-spec with extra single zero vector to mark the end
- num_mels = batch[0][1].size(0)
- max_target_len = max([x[1].size(1) for x in batch]) + 1
- if max_target_len % self.n_frames_per_step != 0:
- max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
- assert max_target_len % self.n_frames_per_step == 0
-
- # include mel padded and gate padded
- mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
- mel_padded.zero_()
- gate_padded = torch.FloatTensor(len(batch), max_target_len)
- gate_padded.zero_()
- output_lengths = torch.LongTensor(len(batch))
- for i in range(len(ids_sorted_decreasing)):
- mel = batch[ids_sorted_decreasing[i]][1]
- mel_padded[i, :, :mel.size(1)] = mel
- gate_padded[i, mel.size(1):] = 1
- output_lengths[i] = mel.size(1)
-
- return text_padded, input_lengths, mel_padded, gate_padded, \
- output_lengths
|