|
|
- import numpy as np
- from scipy.io.wavfile import read
- import torch
-
-
- def get_mask_from_lengths(lengths):
- max_len = torch.max(lengths)
- ids = torch.arange(0, max_len, out=torch.LongTensor(max_len)).cuda()
- mask = (ids < lengths.unsqueeze(1)).byte()
- return mask
-
-
- def load_wav_to_torch(full_path, sr):
- sampling_rate, data = read(full_path)
- assert sr == sampling_rate, "{} SR doesn't match {} on path {}".format(
- sr, sampling_rate, full_path)
- return torch.FloatTensor(data.astype(np.float32))
-
-
- def load_filepaths_and_text(filename, sort_by_length, split="|"):
- with open(filename, encoding='utf-8') as f:
- filepaths_and_text = [line.strip().split(split) for line in f]
-
- if sort_by_length:
- filepaths_and_text.sort(key=lambda x: len(x[1]))
-
- return filepaths_and_text
-
-
- def to_gpu(x):
- x = x.contiguous().cuda(async=True)
- return torch.autograd.Variable(x)
|