|
|
- import torch
- import torch.distributed as dist
- from torch.nn.modules import Module
-
- def _flatten_dense_tensors(tensors):
- """Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of
- same dense type.
- Since inputs are dense, the resulting tensor will be a concatenated 1D
- buffer. Element-wise operation on this buffer will be equivalent to
- operating individually.
- Arguments:
- tensors (Iterable[Tensor]): dense tensors to flatten.
- Returns:
- A contiguous 1D buffer containing input tensors.
- """
- if len(tensors) == 1:
- return tensors[0].contiguous().view(-1)
- flat = torch.cat([t.contiguous().view(-1) for t in tensors], dim=0)
- return flat
-
- def _unflatten_dense_tensors(flat, tensors):
- """View a flat buffer using the sizes of tensors. Assume that tensors are of
- same dense type, and that flat is given by _flatten_dense_tensors.
- Arguments:
- flat (Tensor): flattened dense tensors to unflatten.
- tensors (Iterable[Tensor]): dense tensors whose sizes will be used to
- unflatten flat.
- Returns:
- Unflattened dense tensors with sizes same as tensors and values from
- flat.
- """
- outputs = []
- offset = 0
- for tensor in tensors:
- numel = tensor.numel()
- outputs.append(flat.narrow(0, offset, numel).view_as(tensor))
- offset += numel
- return tuple(outputs)
-
-
- '''
- This version of DistributedDataParallel is designed to be used in conjunction with the multiproc.py
- launcher included with this example. It assumes that your run is using multiprocess with 1
- GPU/process, that the model is on the correct device, and that torch.set_device has been
- used to set the device.
-
- Parameters are broadcasted to the other processes on initialization of DistributedDataParallel,
- and will be allreduced at the finish of the backward pass.
- '''
- class DistributedDataParallel(Module):
-
- def __init__(self, module):
- super(DistributedDataParallel, self).__init__()
- #fallback for PyTorch 0.3
- if not hasattr(dist, '_backend'):
- self.warn_on_half = True
- else:
- self.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False
-
- self.module = module
-
- for p in self.module.state_dict().values():
- if not torch.is_tensor(p):
- continue
- dist.broadcast(p, 0)
-
- def allreduce_params():
- if(self.needs_reduction):
- self.needs_reduction = False
- buckets = {}
- for param in self.module.parameters():
- if param.requires_grad and param.grad is not None:
- tp = type(param.data)
- if tp not in buckets:
- buckets[tp] = []
- buckets[tp].append(param)
- if self.warn_on_half:
- if torch.cuda.HalfTensor in buckets:
- print("WARNING: gloo dist backend for half parameters may be extremely slow." +
- " It is recommended to use the NCCL backend in this case. This currently requires" +
- "PyTorch built from top of tree master.")
- self.warn_on_half = False
-
- for tp in buckets:
- bucket = buckets[tp]
- grads = [param.grad.data for param in bucket]
- coalesced = _flatten_dense_tensors(grads)
- dist.all_reduce(coalesced)
- coalesced /= dist.get_world_size()
- for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
- buf.copy_(synced)
-
- for param in list(self.module.parameters()):
- def allreduce_hook(*unused):
- param._execution_engine.queue_callback(allreduce_params)
- if param.requires_grad:
- param.register_hook(allreduce_hook)
-
- def forward(self, *inputs, **kwargs):
- self.needs_reduction = True
- return self.module(*inputs, **kwargs)
-
- '''
- def _sync_buffers(self):
- buffers = list(self.module._all_buffers())
- if len(buffers) > 0:
- # cross-node buffer sync
- flat_buffers = _flatten_dense_tensors(buffers)
- dist.broadcast(flat_buffers, 0)
- for buf, synced in zip(buffers, _unflatten_dense_tensors(flat_buffers, buffers)):
- buf.copy_(synced)
- def train(self, mode=True):
- # Clear NCCL communicator and CUDA event cache of the default group ID,
- # These cache will be recreated at the later call. This is currently a
- # work-around for a potential NCCL deadlock.
- if dist._backend == dist.dist_backend.NCCL:
- dist._clear_group_cache()
- super(DistributedDataParallel, self).train(mode)
- self.module.train(mode)
- '''
- '''
- Modifies existing model to do gradient allreduce, but doesn't change class
- so you don't need "module"
- '''
- def apply_gradient_allreduce(module):
- if not hasattr(dist, '_backend'):
- module.warn_on_half = True
- else:
- module.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False
-
- for p in module.state_dict().values():
- if not torch.is_tensor(p):
- continue
- dist.broadcast(p, 0)
-
- def allreduce_params():
- if(module.needs_reduction):
- module.needs_reduction = False
- buckets = {}
- for param in module.parameters():
- if param.requires_grad and param.grad is not None:
- tp = type(param.data)
- if tp not in buckets:
- buckets[tp] = []
- buckets[tp].append(param)
- if module.warn_on_half:
- if torch.cuda.HalfTensor in buckets:
- print("WARNING: gloo dist backend for half parameters may be extremely slow." +
- " It is recommended to use the NCCL backend in this case. This currently requires" +
- "PyTorch built from top of tree master.")
- module.warn_on_half = False
-
- for tp in buckets:
- bucket = buckets[tp]
- grads = [param.grad.data for param in bucket]
- coalesced = _flatten_dense_tensors(grads)
- dist.all_reduce(coalesced)
- coalesced /= dist.get_world_size()
- for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
- buf.copy_(synced)
-
- for param in list(module.parameters()):
- def allreduce_hook(*unused):
- param._execution_engine.queue_callback(allreduce_params)
- if param.requires_grad:
- param.register_hook(allreduce_hook)
-
- def set_needs_reduction(self, input, output):
- self.needs_reduction = True
-
- module.register_forward_hook(set_needs_reduction)
- return module
|