|
@ -10,7 +10,7 @@ def create_hparams(hparams_string=None, verbose=False): |
|
|
# Experiment Parameters # |
|
|
# Experiment Parameters # |
|
|
################################ |
|
|
################################ |
|
|
epochs=500, |
|
|
epochs=500, |
|
|
iters_per_checkpoint=500, |
|
|
|
|
|
|
|
|
iters_per_checkpoint=1000, |
|
|
seed=1234, |
|
|
seed=1234, |
|
|
dynamic_loss_scaling=True, |
|
|
dynamic_loss_scaling=True, |
|
|
fp16_run=False, |
|
|
fp16_run=False, |
|
@ -24,10 +24,9 @@ def create_hparams(hparams_string=None, verbose=False): |
|
|
# Data Parameters # |
|
|
# Data Parameters # |
|
|
################################ |
|
|
################################ |
|
|
load_mel_from_disk=False, |
|
|
load_mel_from_disk=False, |
|
|
training_files='filelists/ljs_audio_text_train_filelist.txt', |
|
|
|
|
|
validation_files='filelists/ljs_audio_text_val_filelist.txt', |
|
|
|
|
|
|
|
|
training_files='filelists/ljs_audio22khz_text_train_filelist.txt', |
|
|
|
|
|
validation_files='filelists/ljs_audio22khz_text_val_filelist.txt', |
|
|
text_cleaners=['english_cleaners'], |
|
|
text_cleaners=['english_cleaners'], |
|
|
sort_by_length=False, |
|
|
|
|
|
|
|
|
|
|
|
################################ |
|
|
################################ |
|
|
# Audio Parameters # |
|
|
# Audio Parameters # |
|
@ -39,7 +38,7 @@ def create_hparams(hparams_string=None, verbose=False): |
|
|
win_length=1024, |
|
|
win_length=1024, |
|
|
n_mel_channels=80, |
|
|
n_mel_channels=80, |
|
|
mel_fmin=0.0, |
|
|
mel_fmin=0.0, |
|
|
mel_fmax=None, # if None, half the sampling rate |
|
|
|
|
|
|
|
|
mel_fmax=8000.0, |
|
|
|
|
|
|
|
|
################################ |
|
|
################################ |
|
|
# Model Parameters # |
|
|
# Model Parameters # |
|
@ -57,7 +56,9 @@ def create_hparams(hparams_string=None, verbose=False): |
|
|
decoder_rnn_dim=1024, |
|
|
decoder_rnn_dim=1024, |
|
|
prenet_dim=256, |
|
|
prenet_dim=256, |
|
|
max_decoder_steps=1000, |
|
|
max_decoder_steps=1000, |
|
|
gate_threshold=0.6, |
|
|
|
|
|
|
|
|
gate_threshold=0.5, |
|
|
|
|
|
p_attention_dropout=0.1, |
|
|
|
|
|
p_decoder_dropout=0.1, |
|
|
|
|
|
|
|
|
# Attention parameters |
|
|
# Attention parameters |
|
|
attention_rnn_dim=1024, |
|
|
attention_rnn_dim=1024, |
|
@ -78,9 +79,9 @@ def create_hparams(hparams_string=None, verbose=False): |
|
|
use_saved_learning_rate=False, |
|
|
use_saved_learning_rate=False, |
|
|
learning_rate=1e-3, |
|
|
learning_rate=1e-3, |
|
|
weight_decay=1e-6, |
|
|
weight_decay=1e-6, |
|
|
grad_clip_thresh=1, |
|
|
|
|
|
batch_size=48, |
|
|
|
|
|
mask_padding=False # set model's padded outputs to padded values |
|
|
|
|
|
|
|
|
grad_clip_thresh=1.0, |
|
|
|
|
|
batch_size=64, |
|
|
|
|
|
mask_padding=True # set model's padded outputs to padded values |
|
|
) |
|
|
) |
|
|
|
|
|
|
|
|
if hparams_string: |
|
|
if hparams_string: |
|
|