Browse Source

README.md: updating requirements and inference demo

master
rafaelvalle 6 years ago
parent
commit
58b0ec61bd
1 changed files with 19 additions and 14 deletions
  1. +19
    -14
      README.md

+ 19
- 14
README.md View File

@ -1,6 +1,6 @@
# Tacotron 2 (without wavenet)
Tacotron 2 PyTorch implementation of [Natural TTS Synthesis By Conditioning
PyTorch implementation of [Natural TTS Synthesis By Conditioning
Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf).
This implementation includes **distributed** and **fp16** support
@ -11,9 +11,7 @@ Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's
![Alignment, Predicted Mel Spectrogram, Target Mel Spectrogram](tensorboard.png)
[Download demo audio](https://github.com/NVIDIA/tacotron2/blob/master/demo.wav) trained on LJS and using Ryuchi Yamamoto's [pre-trained Mixture of Logistics
wavenet](https://github.com/r9y9/wavenet_vocoder/)
"Scientists at the CERN laboratory say they have discovered a new particle."
Visit our [website] for audio samples.
## Pre-requisites
1. NVIDIA GPU + CUDA cuDNN
@ -24,11 +22,9 @@ wavenet](https://github.com/r9y9/wavenet_vocoder/)
3. CD into this repo: `cd tacotron2`
4. Update .wav paths: `sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt`
- Alternatively, set `load_mel_from_disk=True` in `hparams.py` and update mel-spectrogram paths
5. Install [pytorch 0.4](https://github.com/pytorch/pytorch)
5. Install [PyTorch 1.0]
6. Install python requirements or build docker image
- Install python requirements: `pip install -r requirements.txt`
- **OR**
- Build docker image: `docker build --tag tacotron2 .`
## Training
1. `python train.py --output_directory=outdir --log_directory=logdir`
@ -37,17 +33,22 @@ wavenet](https://github.com/r9y9/wavenet_vocoder/)
## Multi-GPU (distributed) and FP16 Training
1. `python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True`
## Inference
When performing Mel-Spectrogram to Audio synthesis with a WaveNet model, make sure Tacotron 2 and WaveNet were trained on the same mel-spectrogram representation. Follow these steps to use a a simple inference pipeline using griffin-lim:
1. `jupyter notebook --ip=127.0.0.1 --port=31337`
2. load inference.ipynb
## Inference demo
1. Download our published [Tacotron 2] model
2. Download our published [WaveGlow] model
3. `jupyter notebook --ip=127.0.0.1 --port=31337`
4. Load inference.ipynb
N.b. When performing Mel-Spectrogram to Audio synthesis, make sure Tacotron 2
and the Mel decoder were trained on the same mel-spectrogram representation.
## Related repos
[nv-wavenet](https://github.com/NVIDIA/nv-wavenet/): Faster than real-time
wavenet inference
[WaveGlow](https://github.com/NVIDIA/WaveGlow) Faster than real time Flow-based
Generative Network for Speech Synthesis
[nv-wavenet](https://github.com/NVIDIA/nv-wavenet/) Faster than real time
WaveNet.
## Acknowledgements
This implementation uses code from the following repos: [Keith
@ -61,3 +62,7 @@ We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan
Wang and Zongheng Yang.
[WaveGlow]: https://drive.google.com/file/d/1cjKPHbtAMh_4HTHmuIGNkbOkPBD9qwhj/view?usp=sharing
[Tacotron 2]: https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view?usp=sharing
[pytorch 1.0]: https://github.com/pytorch/pytorch#installation
[website]: https://nv-adlr.github.io/WaveGlow

Loading…
Cancel
Save