[Download demo audio](https://github.com/NVIDIA/tacotron2/blob/master/demo.wav) trained on LJS and using Ryuchi Yamamoto's [pre-trained Mixture of Logistics
When performing Mel-Spectrogram to Audio synthesis with a WaveNet model, make sure Tacotron 2 and WaveNet were trained on the same mel-spectrogram representation. Follow these steps to use a a simple inference pipeline using griffin-lim:
1. `jupyter notebook --ip=127.0.0.1 --port=31337`
2. load inference.ipynb
## Inference demo
1. Download our published [Tacotron 2] model
2. Download our published [WaveGlow] model
3. `jupyter notebook --ip=127.0.0.1 --port=31337`
4. Load inference.ipynb
N.b. When performing Mel-Spectrogram to Audio synthesis, make sure Tacotron 2
and the Mel decoder were trained on the same mel-spectrogram representation.
## Related repos
[nv-wavenet](https://github.com/NVIDIA/nv-wavenet/): Faster than real-time
wavenet inference
[WaveGlow](https://github.com/NVIDIA/WaveGlow) Faster than real time Flow-based
Generative Network for Speech Synthesis
[nv-wavenet](https://github.com/NVIDIA/nv-wavenet/) Faster than real time
WaveNet.
## Acknowledgements
This implementation uses code from the following repos: [Keith
@ -61,3 +62,7 @@ We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan