Browse Source

train.py: updating

master
rafaelvalle 6 years ago
parent
commit
ce29e13959
1 changed files with 25 additions and 31 deletions
  1. +25
    -31
      train.py

+ 25
- 31
train.py View File

@ -5,9 +5,9 @@ import math
from numpy import finfo from numpy import finfo
import torch import torch
from distributed import DistributedDataParallel
from distributed import apply_gradient_allreduce
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from torch.nn import DataParallel
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from fp16_optimizer import FP16_Optimizer from fp16_optimizer import FP16_Optimizer
@ -30,19 +30,20 @@ def batchnorm_to_float(module):
def reduce_tensor(tensor, num_gpus): def reduce_tensor(tensor, num_gpus):
rt = tensor.clone() rt = tensor.clone()
torch.distributed.all_reduce(rt, op=torch.distributed.reduce_op.SUM)
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= num_gpus rt /= num_gpus
return rt return rt
def init_distributed(hparams, n_gpus, rank, group_name): def init_distributed(hparams, n_gpus, rank, group_name):
assert torch.cuda.is_available(), "Distributed mode requires CUDA." assert torch.cuda.is_available(), "Distributed mode requires CUDA."
print("Initializing distributed")
print("Initializing Distributed")
# Set cuda device so everything is done on the right GPU. # Set cuda device so everything is done on the right GPU.
torch.cuda.set_device(rank % torch.cuda.device_count()) torch.cuda.set_device(rank % torch.cuda.device_count())
# Initialize distributed communication # Initialize distributed communication
torch.distributed.init_process_group(
dist.init_process_group(
backend=hparams.dist_backend, init_method=hparams.dist_url, backend=hparams.dist_backend, init_method=hparams.dist_url,
world_size=n_gpus, rank=rank, group_name=group_name) world_size=n_gpus, rank=rank, group_name=group_name)
@ -131,22 +132,20 @@ def validate(model, criterion, valset, iteration, batch_size, n_gpus,
pin_memory=False, collate_fn=collate_fn) pin_memory=False, collate_fn=collate_fn)
val_loss = 0.0 val_loss = 0.0
if distributed_run or torch.cuda.device_count() > 1:
batch_parser = model.module.parse_batch
else:
batch_parser = model.parse_batch
for i, batch in enumerate(val_loader): for i, batch in enumerate(val_loader):
x, y = batch_parser(batch)
x, y = model.parse_batch(batch)
y_pred = model(x) y_pred = model(x)
loss = criterion(y_pred, y) loss = criterion(y_pred, y)
reduced_val_loss = reduce_tensor(loss.data, n_gpus)[0] \
if distributed_run else loss.data[0]
if distributed_run:
reduced_val_loss = reduce_tensor(loss.data, num_gpus).item()
else:
reduced_val_loss = loss.item()
val_loss += reduced_val_loss val_loss += reduced_val_loss
val_loss = val_loss / (i + 1) val_loss = val_loss / (i + 1)
model.train() model.train()
return val_loss
print("Validation loss {}: {:9f} ".format(iteration, reduced_val_loss))
logger.log_validation(reduced_val_loss, model, y, y_pred, iteration)
def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
@ -176,6 +175,9 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
optimizer = FP16_Optimizer( optimizer = FP16_Optimizer(
optimizer, dynamic_loss_scale=hparams.dynamic_loss_scaling) optimizer, dynamic_loss_scale=hparams.dynamic_loss_scaling)
if hparams.distributed_run:
model = apply_gradient_allreduce(model)
criterion = Tacotron2Loss() criterion = Tacotron2Loss()
logger = prepare_directories_and_logger( logger = prepare_directories_and_logger(
@ -194,15 +196,10 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
checkpoint_path, model, optimizer) checkpoint_path, model, optimizer)
if hparams.use_saved_learning_rate: if hparams.use_saved_learning_rate:
learning_rate = _learning_rate learning_rate = _learning_rate
iteration += 1 # next iteration is iteration + 1 iteration += 1 # next iteration is iteration + 1
epoch_offset = max(0, int(iteration / len(train_loader))) epoch_offset = max(0, int(iteration / len(train_loader)))
model.train() model.train()
if hparams.distributed_run or torch.cuda.device_count() > 1:
batch_parser = model.module.parse_batch
else:
batch_parser = model.parse_batch
# ================ MAIN TRAINNIG LOOP! =================== # ================ MAIN TRAINNIG LOOP! ===================
for epoch in range(epoch_offset, hparams.epochs): for epoch in range(epoch_offset, hparams.epochs):
print("Epoch: {}".format(epoch)) print("Epoch: {}".format(epoch))
@ -212,18 +209,21 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
param_group['lr'] = learning_rate param_group['lr'] = learning_rate
model.zero_grad() model.zero_grad()
x, y = batch_parser(batch)
x, y = model.parse_batch(batch)
y_pred = model(x) y_pred = model(x)
loss = criterion(y_pred, y) loss = criterion(y_pred, y)
reduced_loss = reduce_tensor(loss.data, n_gpus)[0] \
if hparams.distributed_run else loss.data[0]
if hparams.distributed_run:
reduced_loss = reduce_tensor(loss.data, num_gpus).item()
else:
reduced_loss = loss.item()
if hparams.fp16_run: if hparams.fp16_run:
optimizer.backward(loss) optimizer.backward(loss)
grad_norm = optimizer.clip_fp32_grads(hparams.grad_clip_thresh) grad_norm = optimizer.clip_fp32_grads(hparams.grad_clip_thresh)
else: else:
loss.backward() loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm(
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), hparams.grad_clip_thresh) model.parameters(), hparams.grad_clip_thresh)
optimizer.step() optimizer.step()
@ -234,20 +234,14 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
duration = time.perf_counter() - start duration = time.perf_counter() - start
print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format( print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format(
iteration, reduced_loss, grad_norm, duration)) iteration, reduced_loss, grad_norm, duration))
logger.log_training( logger.log_training(
reduced_loss, grad_norm, learning_rate, duration, iteration) reduced_loss, grad_norm, learning_rate, duration, iteration)
if not overflow and (iteration % hparams.iters_per_checkpoint == 0): if not overflow and (iteration % hparams.iters_per_checkpoint == 0):
reduced_val_loss = validate(
model, criterion, valset, iteration, hparams.batch_size,
n_gpus, collate_fn, logger, hparams.distributed_run, rank)
validate(model, criterion, valset, iteration, hparams.batch_size,
n_gpus, collate_fn, logger, hparams.distributed_run, rank)
if rank == 0: if rank == 0:
print("Validation loss {}: {:9f} ".format(
iteration, reduced_val_loss))
logger.log_validation(
reduced_val_loss, model, y, y_pred, iteration)
checkpoint_path = os.path.join( checkpoint_path = os.path.join(
output_directory, "checkpoint_{}".format(iteration)) output_directory, "checkpoint_{}".format(iteration))
save_checkpoint(model, optimizer, learning_rate, iteration, save_checkpoint(model, optimizer, learning_rate, iteration,

Loading…
Cancel
Save