|
@ -351,7 +351,6 @@ class Decoder(nn.Module): |
|
|
attention_weights: |
|
|
attention_weights: |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
prenet_output = self.prenet(decoder_input) |
|
|
|
|
|
cell_input = torch.cat((self.decoder_hidden, self.attention_context), -1) |
|
|
cell_input = torch.cat((self.decoder_hidden, self.attention_context), -1) |
|
|
self.attention_hidden, self.attention_cell = self.attention_rnn( |
|
|
self.attention_hidden, self.attention_cell = self.attention_rnn( |
|
|
cell_input, (self.attention_hidden, self.attention_cell)) |
|
|
cell_input, (self.attention_hidden, self.attention_cell)) |
|
@ -364,6 +363,7 @@ class Decoder(nn.Module): |
|
|
attention_weights_cat, self.mask) |
|
|
attention_weights_cat, self.mask) |
|
|
|
|
|
|
|
|
self.attention_weights_cum += self.attention_weights |
|
|
self.attention_weights_cum += self.attention_weights |
|
|
|
|
|
prenet_output = self.prenet(decoder_input) |
|
|
decoder_input = torch.cat((prenet_output, self.attention_context), -1) |
|
|
decoder_input = torch.cat((prenet_output, self.attention_context), -1) |
|
|
self.decoder_hidden, self.decoder_cell = self.decoder_rnn( |
|
|
self.decoder_hidden, self.decoder_cell = self.decoder_rnn( |
|
|
decoder_input, (self.decoder_hidden, self.decoder_cell)) |
|
|
decoder_input, (self.decoder_hidden, self.decoder_cell)) |
|
|