|
|
@ -78,15 +78,19 @@ def prepare_directories_and_logger(output_directory, log_directory, rank): |
|
|
|
def load_model(hparams): |
|
|
|
model = Tacotron2(hparams).cuda() |
|
|
|
model = batchnorm_to_float(model.half()) if hparams.fp16_run else model |
|
|
|
model = DistributedDataParallel(model) \ |
|
|
|
if hparams.distributed_run else DataParallel(model) |
|
|
|
|
|
|
|
if hparams.distributed_run: |
|
|
|
model = DistributedDataParallel(model) |
|
|
|
elif torch.cuda.device_count() > 1: |
|
|
|
model = DataParallel(model) |
|
|
|
|
|
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
def warm_start_model(checkpoint_path, model): |
|
|
|
assert os.path.isfile(checkpoint_path) |
|
|
|
print("Warm starting model from checkpoint '{}'".format(checkpoint_path)) |
|
|
|
checkpoint_dict = torch.load(checkpoint_path) |
|
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') |
|
|
|
model.load_state_dict(checkpoint_dict['state_dict']) |
|
|
|
return model |
|
|
|
|
|
|
@ -124,8 +128,13 @@ def validate(model, criterion, valset, iteration, batch_size, n_gpus, |
|
|
|
pin_memory=False, collate_fn=collate_fn) |
|
|
|
|
|
|
|
val_loss = 0.0 |
|
|
|
if distributed_run or torch.cuda.device_count() > 1: |
|
|
|
batch_parser = model.module.parse_batch |
|
|
|
else: |
|
|
|
batch_parser = model.parse_batch |
|
|
|
|
|
|
|
for i, batch in enumerate(val_loader): |
|
|
|
x, y = model.module.parse_batch(batch) |
|
|
|
x, y = batch_parser(batch) |
|
|
|
y_pred = model(x) |
|
|
|
loss = criterion(y_pred, y) |
|
|
|
reduced_val_loss = reduce_tensor(loss.data, n_gpus)[0] \ |
|
|
@ -184,6 +193,10 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, |
|
|
|
epoch_offset = max(0, int(iteration / len(train_loader))) |
|
|
|
|
|
|
|
model.train() |
|
|
|
if hparams.distributed_run or torch.cuda.device_count() > 1: |
|
|
|
batch_parser = model.module.parse_batch |
|
|
|
else: |
|
|
|
batch_parser = model.parse_batch |
|
|
|
# ================ MAIN TRAINNIG LOOP! =================== |
|
|
|
for epoch in range(epoch_offset, hparams.epochs): |
|
|
|
print("Epoch: {}".format(epoch)) |
|
|
@ -193,7 +206,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, |
|
|
|
param_group['lr'] = learning_rate |
|
|
|
|
|
|
|
model.zero_grad() |
|
|
|
x, y = model.module.parse_batch(batch) |
|
|
|
x, y = batch_parser(batch) |
|
|
|
y_pred = model(x) |
|
|
|
loss = criterion(y_pred, y) |
|
|
|
reduced_loss = reduce_tensor(loss.data, n_gpus)[0] \ |
|
|
@ -205,7 +218,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, |
|
|
|
else: |
|
|
|
loss.backward() |
|
|
|
grad_norm = torch.nn.utils.clip_grad_norm( |
|
|
|
model.module.parameters(), hparams.grad_clip_thresh) |
|
|
|
model.parameters(), hparams.grad_clip_thresh) |
|
|
|
|
|
|
|
optimizer.step() |
|
|
|
|
|
|
|