You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

48 lines
2.0 KiB

import random
import torch
from torch.utils.tensorboard import SummaryWriter
from plotting_utils import plot_alignment_to_numpy, plot_spectrogram_to_numpy
from plotting_utils import plot_gate_outputs_to_numpy
class Tacotron2Logger(SummaryWriter):
def __init__(self, logdir):
super(Tacotron2Logger, self).__init__(logdir)
def log_training(self, reduced_loss, grad_norm, learning_rate, duration,
iteration):
self.add_scalar("training.loss", reduced_loss, iteration)
self.add_scalar("grad.norm", grad_norm, iteration)
self.add_scalar("learning.rate", learning_rate, iteration)
self.add_scalar("duration", duration, iteration)
def log_validation(self, reduced_loss, model, y, y_pred, iteration):
self.add_scalar("validation.loss", reduced_loss, iteration)
_, mel_outputs, gate_outputs, alignments = y_pred
mel_targets, gate_targets = y
# plot distribution of parameters
for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
self.add_histogram(tag, value.data.cpu().numpy(), iteration)
# plot alignment, mel target and predicted, gate target and predicted
idx = random.randint(0, alignments.size(0) - 1)
self.add_image(
"alignment",
plot_alignment_to_numpy(alignments[idx].data.cpu().numpy().T),
iteration, dataformats='HWC')
self.add_image(
"mel_target",
plot_spectrogram_to_numpy(mel_targets[idx].data.cpu().numpy()),
iteration, dataformats='HWC')
self.add_image(
"mel_predicted",
plot_spectrogram_to_numpy(mel_outputs[idx].data.cpu().numpy()),
iteration, dataformats='HWC')
self.add_image(
"gate",
plot_gate_outputs_to_numpy(
gate_targets[idx].data.cpu().numpy(),
torch.sigmoid(gate_outputs[idx]).data.cpu().numpy()),
iteration, dataformats='HWC')