import matplotlib
|
|
matplotlib.use("Agg")
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
|
|
|
|
def save_figure_to_numpy(fig):
|
|
# save it to a numpy array.
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
return data
|
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None):
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
im = ax.imshow(alignment, aspect='auto', origin='lower',
|
|
interpolation='none')
|
|
fig.colorbar(im, ax=ax)
|
|
xlabel = 'Decoder timestep'
|
|
if info is not None:
|
|
xlabel += '\n\n' + info
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel('Encoder timestep')
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = save_figure_to_numpy(fig)
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram):
|
|
fig, ax = plt.subplots(figsize=(12, 3))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
|
interpolation='none')
|
|
plt.colorbar(im, ax=ax)
|
|
plt.xlabel("Frames")
|
|
plt.ylabel("Channels")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = save_figure_to_numpy(fig)
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def plot_gate_outputs_to_numpy(gate_targets, gate_outputs):
|
|
fig, ax = plt.subplots(figsize=(12, 3))
|
|
ax.scatter(range(len(gate_targets)), gate_targets, alpha=0.5,
|
|
color='green', marker='+', s=1, label='target')
|
|
ax.scatter(range(len(gate_outputs)), gate_outputs, alpha=0.5,
|
|
color='red', marker='.', s=1, label='predicted')
|
|
|
|
plt.xlabel("Frames (Green target, Red predicted)")
|
|
plt.ylabel("Gate State")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = save_figure_to_numpy(fig)
|
|
plt.close()
|
|
return data
|