import random
|
|
import torch.nn.functional as F
|
|
from tensorboardX import SummaryWriter
|
|
from plotting_utils import plot_alignment_to_numpy, plot_spectrogram_to_numpy
|
|
from plotting_utils import plot_gate_outputs_to_numpy
|
|
|
|
|
|
class Tacotron2Logger(SummaryWriter):
|
|
def __init__(self, logdir):
|
|
super(Tacotron2Logger, self).__init__(logdir)
|
|
|
|
def log_training(self, reduced_loss, grad_norm, learning_rate, duration,
|
|
iteration):
|
|
self.add_scalar("training.loss", reduced_loss, iteration)
|
|
self.add_scalar("grad.norm", grad_norm, iteration)
|
|
self.add_scalar("learning.rate", learning_rate, iteration)
|
|
self.add_scalar("duration", duration, iteration)
|
|
|
|
def log_validation(self, reduced_loss, model, y, y_pred, iteration):
|
|
self.add_scalar("validation.loss", reduced_loss, iteration)
|
|
_, mel_outputs, gate_outputs, alignments = y_pred
|
|
mel_targets, gate_targets = y
|
|
|
|
# plot distribution of parameters
|
|
for tag, value in model.named_parameters():
|
|
tag = tag.replace('.', '/')
|
|
self.add_histogram(tag, value.data.cpu().numpy(), iteration)
|
|
|
|
# plot alignment, mel target and predicted, gate target and predicted
|
|
idx = random.randint(0, alignments.size(0) - 1)
|
|
self.add_image(
|
|
"alignment",
|
|
plot_alignment_to_numpy(alignments[idx].data.cpu().numpy().T),
|
|
iteration)
|
|
self.add_image(
|
|
"mel_target",
|
|
plot_spectrogram_to_numpy(mel_targets[idx].data.cpu().numpy()),
|
|
iteration)
|
|
self.add_image(
|
|
"mel_predicted",
|
|
plot_spectrogram_to_numpy(mel_outputs[idx].data.cpu().numpy()),
|
|
iteration)
|
|
self.add_image(
|
|
"gate",
|
|
plot_gate_outputs_to_numpy(
|
|
gate_targets[idx].data.cpu().numpy(),
|
|
F.sigmoid(gate_outputs[idx]).data.cpu().numpy()),
|
|
iteration)
|