import os
|
|
import time
|
|
import argparse
|
|
import math
|
|
|
|
import torch
|
|
from distributed import DistributedDataParallel
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from torch.nn import DataParallel
|
|
from torch.utils.data import DataLoader
|
|
|
|
from fp16_optimizer import FP16_Optimizer
|
|
|
|
from model import Tacotron2
|
|
from data_utils import TextMelLoader, TextMelCollate
|
|
from loss_function import Tacotron2Loss
|
|
from logger import Tacotron2Logger
|
|
from hparams import create_hparams
|
|
|
|
|
|
def batchnorm_to_float(module):
|
|
"""Converts batch norm modules to FP32"""
|
|
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
|
|
module.float()
|
|
for child in module.children():
|
|
batchnorm_to_float(child)
|
|
return module
|
|
|
|
|
|
def reduce_tensor(tensor, num_gpus):
|
|
rt = tensor.clone()
|
|
torch.distributed.all_reduce(rt, op=torch.distributed.reduce_op.SUM)
|
|
rt /= num_gpus
|
|
return rt
|
|
|
|
|
|
def init_distributed(hparams, n_gpus, rank, group_name):
|
|
assert torch.cuda.is_available(), "Distributed mode requires CUDA."
|
|
print("Initializing distributed")
|
|
# Set cuda device so everything is done on the right GPU.
|
|
torch.cuda.set_device(rank % torch.cuda.device_count())
|
|
|
|
# Initialize distributed communication
|
|
torch.distributed.init_process_group(
|
|
backend=hparams.dist_backend, init_method=hparams.dist_url,
|
|
world_size=n_gpus, rank=rank, group_name=group_name)
|
|
|
|
print("Done initializing distributed")
|
|
|
|
|
|
def prepare_dataloaders(hparams):
|
|
# Get data, data loaders and collate function ready
|
|
trainset = TextMelLoader(hparams.training_files, hparams)
|
|
valset = TextMelLoader(hparams.validation_files, hparams)
|
|
collate_fn = TextMelCollate(hparams.n_frames_per_step)
|
|
|
|
train_sampler = DistributedSampler(trainset) \
|
|
if hparams.distributed_run else None
|
|
|
|
train_loader = DataLoader(trainset, num_workers=1, shuffle=False,
|
|
sampler=train_sampler,
|
|
batch_size=hparams.batch_size, pin_memory=False,
|
|
drop_last=True, collate_fn=collate_fn)
|
|
return train_loader, valset, collate_fn
|
|
|
|
|
|
def prepare_directories_and_logger(output_directory, log_directory, rank):
|
|
if rank == 0:
|
|
if not os.path.isdir(output_directory):
|
|
os.makedirs(output_directory)
|
|
os.chmod(output_directory, 0o775)
|
|
logger = Tacotron2Logger(os.path.join(output_directory, log_directory))
|
|
else:
|
|
logger = None
|
|
return logger
|
|
|
|
|
|
def load_model(hparams):
|
|
model = Tacotron2(hparams).cuda()
|
|
model = batchnorm_to_float(model.half()) if hparams.fp16_run else model
|
|
|
|
if hparams.distributed_run:
|
|
model = DistributedDataParallel(model)
|
|
elif torch.cuda.device_count() > 1:
|
|
model = DataParallel(model)
|
|
|
|
return model
|
|
|
|
|
|
def warm_start_model(checkpoint_path, model):
|
|
assert os.path.isfile(checkpoint_path)
|
|
print("Warm starting model from checkpoint '{}'".format(checkpoint_path))
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
|
model.load_state_dict(checkpoint_dict['state_dict'])
|
|
return model
|
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer):
|
|
assert os.path.isfile(checkpoint_path)
|
|
print("Loading checkpoint '{}'".format(checkpoint_path))
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
|
model.load_state_dict(checkpoint_dict['state_dict'])
|
|
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
|
learning_rate = checkpoint_dict['learning_rate']
|
|
iteration = checkpoint_dict['iteration']
|
|
print("Loaded checkpoint '{}' from iteration {}" .format(
|
|
checkpoint_path, iteration))
|
|
return model, optimizer, learning_rate, iteration
|
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
|
|
print("Saving model and optimizer state at iteration {} to {}".format(
|
|
iteration, filepath))
|
|
torch.save({'iteration': iteration,
|
|
'state_dict': model.state_dict(),
|
|
'optimizer': optimizer.state_dict(),
|
|
'learning_rate': learning_rate}, filepath)
|
|
|
|
|
|
def validate(model, criterion, valset, iteration, batch_size, n_gpus,
|
|
collate_fn, logger, distributed_run, rank):
|
|
"""Handles all the validation scoring and printing"""
|
|
model.eval()
|
|
with torch.no_grad():
|
|
val_sampler = DistributedSampler(valset) if distributed_run else None
|
|
val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1,
|
|
shuffle=False, batch_size=batch_size,
|
|
pin_memory=False, collate_fn=collate_fn)
|
|
|
|
val_loss = 0.0
|
|
for i, batch in enumerate(val_loader):
|
|
x, y = model.parse_batch(batch)
|
|
y_pred = model(x)
|
|
loss = criterion(y_pred, y)
|
|
reduced_val_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
|
if distributed_run else loss.data[0]
|
|
val_loss += reduced_val_loss
|
|
val_loss = val_loss / (i + 1)
|
|
|
|
model.train()
|
|
return val_loss
|
|
|
|
|
|
def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|
rank, group_name, hparams):
|
|
"""Training and validation logging results to tensorboard and stdout
|
|
|
|
Params
|
|
------
|
|
output_directory (string): directory to save checkpoints
|
|
log_directory (string) directory to save tensorboard logs
|
|
checkpoint_path(string): checkpoint path
|
|
n_gpus (int): number of gpus
|
|
rank (int): rank of current gpu
|
|
hparams (object): comma separated list of "name=value" pairs.
|
|
"""
|
|
if hparams.distributed_run:
|
|
init_distributed(hparams, n_gpus, rank, group_name)
|
|
|
|
torch.manual_seed(hparams.seed)
|
|
torch.cuda.manual_seed(hparams.seed)
|
|
|
|
model = load_model(hparams)
|
|
learning_rate = hparams.learning_rate
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,
|
|
weight_decay=hparams.weight_decay)
|
|
if hparams.fp16_run:
|
|
optimizer = FP16_Optimizer(
|
|
optimizer, dynamic_loss_scale=hparams.dynamic_loss_scaling)
|
|
|
|
criterion = Tacotron2Loss()
|
|
|
|
logger = prepare_directories_and_logger(
|
|
output_directory, log_directory, rank)
|
|
|
|
train_loader, valset, collate_fn = prepare_dataloaders(hparams)
|
|
|
|
# Load checkpoint if one exists
|
|
iteration = 0
|
|
epoch_offset = 0
|
|
if checkpoint_path is not None:
|
|
if warm_start:
|
|
model = warm_start_model(checkpoint_path, model)
|
|
else:
|
|
model, optimizer, learning_rate, iteration = load_checkpoint(
|
|
checkpoint_path, model, optimizer)
|
|
iteration += 1 # next iteration is iteration + 1
|
|
epoch_offset = max(0, int(iteration / len(train_loader)))
|
|
|
|
model.train()
|
|
# ================ MAIN TRAINNIG LOOP! ===================
|
|
for epoch in range(epoch_offset, hparams.epochs):
|
|
print("Epoch: {}".format(epoch))
|
|
for i, batch in enumerate(train_loader):
|
|
start = time.perf_counter()
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = learning_rate
|
|
|
|
model.zero_grad()
|
|
x, y = model.parse_batch(batch)
|
|
y_pred = model(x)
|
|
loss = criterion(y_pred, y)
|
|
reduced_loss = reduce_tensor(loss.data, n_gpus)[0] \
|
|
if hparams.distributed_run else loss.data[0]
|
|
|
|
if hparams.fp16_run:
|
|
optimizer.backward(loss)
|
|
grad_norm = optimizer.clip_fp32_grads(hparams.grad_clip_thresh)
|
|
else:
|
|
loss.backward()
|
|
grad_norm = torch.nn.utils.clip_grad_norm(
|
|
model.parameters(), hparams.grad_clip_thresh)
|
|
|
|
optimizer.step()
|
|
|
|
overflow = optimizer.overflow if hparams.fp16_run else False
|
|
|
|
if not overflow and not math.isnan(reduced_loss) and rank == 0:
|
|
duration = time.perf_counter() - start
|
|
print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format(
|
|
iteration, reduced_loss, grad_norm, duration))
|
|
|
|
logger.log_training(
|
|
reduced_loss, grad_norm, learning_rate, duration, iteration)
|
|
|
|
if not overflow and (iteration % hparams.iters_per_checkpoint == 0):
|
|
reduced_val_loss = validate(
|
|
model, criterion, valset, iteration, hparams.batch_size,
|
|
n_gpus, collate_fn, logger, hparams.distributed_run, rank)
|
|
|
|
if rank == 0:
|
|
print("Validation loss {}: {:9f} ".format(
|
|
iteration, reduced_val_loss))
|
|
logger.log_validation(
|
|
reduced_val_loss, model, y, y_pred, iteration)
|
|
checkpoint_path = os.path.join(
|
|
output_directory, "checkpoint_{}".format(iteration))
|
|
save_checkpoint(model, optimizer, learning_rate, iteration,
|
|
checkpoint_path)
|
|
|
|
iteration += 1
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-o', '--output_directory', type=str,
|
|
help='directory to save checkpoints')
|
|
parser.add_argument('-l', '--log_directory', type=str,
|
|
help='directory to save tensorboard logs')
|
|
parser.add_argument('-c', '--checkpoint_path', type=str, default=None,
|
|
required=False, help='checkpoint path')
|
|
parser.add_argument('--warm_start', action='store_true',
|
|
help='load the model only (warm start)')
|
|
parser.add_argument('--n_gpus', type=int, default=1,
|
|
required=False, help='number of gpus')
|
|
parser.add_argument('--rank', type=int, default=0,
|
|
required=False, help='rank of current gpu')
|
|
parser.add_argument('--group_name', type=str, default='group_name',
|
|
required=False, help='Distributed group name')
|
|
parser.add_argument('--hparams', type=str,
|
|
required=False, help='comma separated name=value pairs')
|
|
|
|
args = parser.parse_args()
|
|
hparams = create_hparams(args.hparams)
|
|
|
|
torch.backends.cudnn.enabled = hparams.cudnn_enabled
|
|
torch.backends.cudnn.benchmark = hparams.cudnn_benchmark
|
|
|
|
print("FP16 Run:", hparams.fp16_run)
|
|
print("Dynamic Loss Scaling", hparams.dynamic_loss_scaling)
|
|
print("Distributed Run:", hparams.distributed_run)
|
|
print("cuDNN Enabled:", hparams.cudnn_enabled)
|
|
print("cuDNN Benchmark:", hparams.cudnn_benchmark)
|
|
|
|
train(args.output_directory, args.log_directory, args.checkpoint_path,
|
|
args.warm_start, args.n_gpus, args.rank, args.group_name, hparams)
|