|
|
- import os
- import time
- import argparse
- import math
- from numpy import finfo
-
- import torch
- from distributed import apply_gradient_allreduce
- import torch.distributed as dist
- from torch.utils.data.distributed import DistributedSampler
- from torch.utils.data import DataLoader
-
- from model import Tacotron2
- from data_utils import TextMelLoader, TextMelCollate
- from loss_function import Tacotron2Loss
- from logger import Tacotron2Logger
- from hparams import create_hparams
-
-
- def reduce_tensor(tensor, n_gpus):
- rt = tensor.clone()
- dist.all_reduce(rt, op=dist.reduce_op.SUM)
- rt /= n_gpus
- return rt
-
-
- def init_distributed(hparams, n_gpus, rank, group_name):
- assert torch.cuda.is_available(), "Distributed mode requires CUDA."
- print("Initializing Distributed")
-
- # Set cuda device so everything is done on the right GPU.
- torch.cuda.set_device(rank % torch.cuda.device_count())
-
- # Initialize distributed communication
- dist.init_process_group(
- backend=hparams.dist_backend, init_method=hparams.dist_url,
- world_size=n_gpus, rank=rank, group_name=group_name)
-
- print("Done initializing distributed")
-
-
- def prepare_dataloaders(hparams):
- # Get data, data loaders and collate function ready
- trainset = TextMelLoader(hparams.training_files, hparams)
- valset = TextMelLoader(hparams.validation_files, hparams)
- collate_fn = TextMelCollate(hparams.n_frames_per_step)
-
- if hparams.distributed_run:
- train_sampler = DistributedSampler(trainset)
- shuffle = False
- else:
- train_sampler = None
- shuffle = True
-
- train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle,
- sampler=train_sampler,
- batch_size=hparams.batch_size, pin_memory=False,
- drop_last=True, collate_fn=collate_fn)
- return train_loader, valset, collate_fn
-
-
- def prepare_directories_and_logger(output_directory, log_directory, rank):
- if rank == 0:
- if not os.path.isdir(output_directory):
- os.makedirs(output_directory)
- os.chmod(output_directory, 0o775)
- logger = Tacotron2Logger(os.path.join(output_directory, log_directory))
- else:
- logger = None
- return logger
-
-
- def load_model(hparams):
- model = Tacotron2(hparams).cuda()
- if hparams.fp16_run:
- model.decoder.attention_layer.score_mask_value = finfo('float16').min
-
- if hparams.distributed_run:
- model = apply_gradient_allreduce(model)
-
- return model
-
-
- def warm_start_model(checkpoint_path, model, ignore_layers):
- assert os.path.isfile(checkpoint_path)
- print("Warm starting model from checkpoint '{}'".format(checkpoint_path))
- checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
- model_dict = checkpoint_dict['state_dict']
- if len(ignore_layers) > 0:
- model_dict = {k: v for k, v in model_dict.items()
- if k not in ignore_layers}
- dummy_dict = model.state_dict()
- dummy_dict.update(model_dict)
- model_dict = dummy_dict
- model.load_state_dict(model_dict)
- return model
-
-
- def load_checkpoint(checkpoint_path, model, optimizer):
- assert os.path.isfile(checkpoint_path)
- print("Loading checkpoint '{}'".format(checkpoint_path))
- checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
- model.load_state_dict(checkpoint_dict['state_dict'])
- optimizer.load_state_dict(checkpoint_dict['optimizer'])
- learning_rate = checkpoint_dict['learning_rate']
- iteration = checkpoint_dict['iteration']
- print("Loaded checkpoint '{}' from iteration {}" .format(
- checkpoint_path, iteration))
- return model, optimizer, learning_rate, iteration
-
-
- def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
- print("Saving model and optimizer state at iteration {} to {}".format(
- iteration, filepath))
- torch.save({'iteration': iteration,
- 'state_dict': model.state_dict(),
- 'optimizer': optimizer.state_dict(),
- 'learning_rate': learning_rate}, filepath)
-
-
- def validate(model, criterion, valset, iteration, batch_size, n_gpus,
- collate_fn, logger, distributed_run, rank):
- """Handles all the validation scoring and printing"""
- model.eval()
- with torch.no_grad():
- val_sampler = DistributedSampler(valset) if distributed_run else None
- val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1,
- shuffle=False, batch_size=batch_size,
- pin_memory=False, collate_fn=collate_fn)
-
- val_loss = 0.0
- for i, batch in enumerate(val_loader):
- x, y = model.parse_batch(batch)
- y_pred = model(x)
- loss = criterion(y_pred, y)
- if distributed_run:
- reduced_val_loss = reduce_tensor(loss.data, n_gpus).item()
- else:
- reduced_val_loss = loss.item()
- val_loss += reduced_val_loss
- val_loss = val_loss / (i + 1)
-
- model.train()
- if rank == 0:
- print("Validation loss {}: {:9f} ".format(iteration, reduced_val_loss))
- logger.log_validation(val_loss, model, y, y_pred, iteration)
-
-
- def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
- rank, group_name, hparams):
- """Training and validation logging results to tensorboard and stdout
-
- Params
- ------
- output_directory (string): directory to save checkpoints
- log_directory (string) directory to save tensorboard logs
- checkpoint_path(string): checkpoint path
- n_gpus (int): number of gpus
- rank (int): rank of current gpu
- hparams (object): comma separated list of "name=value" pairs.
- """
- if hparams.distributed_run:
- init_distributed(hparams, n_gpus, rank, group_name)
-
- torch.manual_seed(hparams.seed)
- torch.cuda.manual_seed(hparams.seed)
-
- model = load_model(hparams)
- learning_rate = hparams.learning_rate
- optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,
- weight_decay=hparams.weight_decay)
-
- if hparams.fp16_run:
- from apex import amp
- model, optimizer = amp.initialize(
- model, optimizer, opt_level='O2')
-
- if hparams.distributed_run:
- model = apply_gradient_allreduce(model)
-
- criterion = Tacotron2Loss()
-
- logger = prepare_directories_and_logger(
- output_directory, log_directory, rank)
-
- train_loader, valset, collate_fn = prepare_dataloaders(hparams)
-
- # Load checkpoint if one exists
- iteration = 0
- epoch_offset = 0
- if checkpoint_path is not None:
- if warm_start:
- model = warm_start_model(
- checkpoint_path, model, hparams.ignore_layers)
- else:
- model, optimizer, _learning_rate, iteration = load_checkpoint(
- checkpoint_path, model, optimizer)
- if hparams.use_saved_learning_rate:
- learning_rate = _learning_rate
- iteration += 1 # next iteration is iteration + 1
- epoch_offset = max(0, int(iteration / len(train_loader)))
-
- model.train()
- is_overflow = False
- # ================ MAIN TRAINNIG LOOP! ===================
- for epoch in range(epoch_offset, hparams.epochs):
- print("Epoch: {}".format(epoch))
- for i, batch in enumerate(train_loader):
- start = time.perf_counter()
- for param_group in optimizer.param_groups:
- param_group['lr'] = learning_rate
-
- model.zero_grad()
- x, y = model.parse_batch(batch)
- y_pred = model(x)
-
- loss = criterion(y_pred, y)
- if hparams.distributed_run:
- reduced_loss = reduce_tensor(loss.data, n_gpus).item()
- else:
- reduced_loss = loss.item()
- if hparams.fp16_run:
- with amp.scale_loss(loss, optimizer) as scaled_loss:
- scaled_loss.backward()
- else:
- loss.backward()
-
- if hparams.fp16_run:
- grad_norm = torch.nn.utils.clip_grad_norm_(
- amp.master_params(optimizer), hparams.grad_clip_thresh)
- is_overflow = math.isnan(grad_norm)
- else:
- grad_norm = torch.nn.utils.clip_grad_norm_(
- model.parameters(), hparams.grad_clip_thresh)
-
- optimizer.step()
-
- if not is_overflow and rank == 0:
- duration = time.perf_counter() - start
- print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format(
- iteration, reduced_loss, grad_norm, duration))
- logger.log_training(
- reduced_loss, grad_norm, learning_rate, duration, iteration)
-
- if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0):
- validate(model, criterion, valset, iteration,
- hparams.batch_size, n_gpus, collate_fn, logger,
- hparams.distributed_run, rank)
- if rank == 0:
- checkpoint_path = os.path.join(
- output_directory, "checkpoint_{}".format(iteration))
- save_checkpoint(model, optimizer, learning_rate, iteration,
- checkpoint_path)
-
- iteration += 1
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('-o', '--output_directory', type=str,
- help='directory to save checkpoints')
- parser.add_argument('-l', '--log_directory', type=str,
- help='directory to save tensorboard logs')
- parser.add_argument('-c', '--checkpoint_path', type=str, default=None,
- required=False, help='checkpoint path')
- parser.add_argument('--warm_start', action='store_true',
- help='load model weights only, ignore specified layers')
- parser.add_argument('--n_gpus', type=int, default=1,
- required=False, help='number of gpus')
- parser.add_argument('--rank', type=int, default=0,
- required=False, help='rank of current gpu')
- parser.add_argument('--group_name', type=str, default='group_name',
- required=False, help='Distributed group name')
- parser.add_argument('--hparams', type=str,
- required=False, help='comma separated name=value pairs')
-
- args = parser.parse_args()
- hparams = create_hparams(args.hparams)
-
- torch.backends.cudnn.enabled = hparams.cudnn_enabled
- torch.backends.cudnn.benchmark = hparams.cudnn_benchmark
-
- print("FP16 Run:", hparams.fp16_run)
- print("Dynamic Loss Scaling:", hparams.dynamic_loss_scaling)
- print("Distributed Run:", hparams.distributed_run)
- print("cuDNN Enabled:", hparams.cudnn_enabled)
- print("cuDNN Benchmark:", hparams.cudnn_benchmark)
-
- train(args.output_directory, args.log_directory, args.checkpoint_path,
- args.warm_start, args.n_gpus, args.rank, args.group_name, hparams)
|