|
|
@ -74,22 +74,23 @@ def prepare_directories_and_logger(output_directory, log_directory, rank): |
|
|
|
logger = None |
|
|
|
return logger |
|
|
|
|
|
|
|
|
|
|
|
def load_model(hparams): |
|
|
|
model = Tacotron2(hparams).cuda() |
|
|
|
model = batchnorm_to_float(model.half()) if hparams.fp16_run else model |
|
|
|
|
|
|
|
tacotron_model = model |
|
|
|
if hparams.distributed_run: |
|
|
|
model = DistributedDataParallel(model) |
|
|
|
elif torch.cuda.device_count() > 1: |
|
|
|
model = DataParallel(model) |
|
|
|
|
|
|
|
return model, tacotron |
|
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
def warm_start_model(checkpoint_path, model): |
|
|
|
assert os.path.isfile(checkpoint_path) |
|
|
|
print("Warm starting model from checkpoint '{}'".format(checkpoint_path)) |
|
|
|
checkpoint_dict = torch.load(checkpoint_path) |
|
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') |
|
|
|
model.load_state_dict(checkpoint_dict['state_dict']) |
|
|
|
return model |
|
|
|
|
|
|
@ -117,7 +118,7 @@ def save_checkpoint(model, optimizer, learning_rate, iteration, filepath): |
|
|
|
|
|
|
|
|
|
|
|
def validate(model, criterion, valset, iteration, batch_size, n_gpus, |
|
|
|
collate_fn, logger, distributed_run, rank, batch_parser): |
|
|
|
collate_fn, logger, distributed_run, rank): |
|
|
|
"""Handles all the validation scoring and printing""" |
|
|
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
|
@ -128,7 +129,7 @@ def validate(model, criterion, valset, iteration, batch_size, n_gpus, |
|
|
|
|
|
|
|
val_loss = 0.0 |
|
|
|
for i, batch in enumerate(val_loader): |
|
|
|
x, y = batch_parser(batch) |
|
|
|
x, y = model.parse_batch(batch) |
|
|
|
y_pred = model(x) |
|
|
|
loss = criterion(y_pred, y) |
|
|
|
reduced_val_loss = reduce_tensor(loss.data, n_gpus)[0] \ |
|
|
@ -196,11 +197,11 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, |
|
|
|
param_group['lr'] = learning_rate |
|
|
|
|
|
|
|
model.zero_grad() |
|
|
|
x, y = tacotron_model.parse_batch(batch) |
|
|
|
x, y = model.parse_batch(batch) |
|
|
|
y_pred = model(x) |
|
|
|
loss = criterion(y_pred, y) |
|
|
|
reduced_loss = reduce_tensor(loss.data, n_gpus).item() \ |
|
|
|
if hparams.distributed_run else loss.item() |
|
|
|
reduced_loss = reduce_tensor(loss.data, n_gpus)[0] \ |
|
|
|
if hparams.distributed_run else loss.data[0] |
|
|
|
|
|
|
|
if hparams.fp16_run: |
|
|
|
optimizer.backward(loss) |
|
|
@ -208,7 +209,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, |
|
|
|
else: |
|
|
|
loss.backward() |
|
|
|
grad_norm = torch.nn.utils.clip_grad_norm( |
|
|
|
tacotron_model.parameters(), hparams.grad_clip_thresh) |
|
|
|
model.parameters(), hparams.grad_clip_thresh) |
|
|
|
|
|
|
|
optimizer.step() |
|
|
|
|
|
|
@ -225,7 +226,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, |
|
|
|
if not overflow and (iteration % hparams.iters_per_checkpoint == 0): |
|
|
|
reduced_val_loss = validate( |
|
|
|
model, criterion, valset, iteration, hparams.batch_size, |
|
|
|
n_gpus, collate_fn, logger, hparams.distributed_run, rank, tacotron_model.parse_batch) |
|
|
|
n_gpus, collate_fn, logger, hparams.distributed_run, rank) |
|
|
|
|
|
|
|
if rank == 0: |
|
|
|
print("Validation loss {}: {:9f} ".format( |
|
|
|