|
|
- import random
- import torch.nn.functional as F
- from tensorboardX import SummaryWriter
- from plotting_utils import plot_alignment_to_numpy, plot_spectrogram_to_numpy
- from plotting_utils import plot_gate_outputs_to_numpy
-
-
- class Tacotron2Logger(SummaryWriter):
- def __init__(self, logdir):
- super(Tacotron2Logger, self).__init__(logdir)
-
- def log_training(self, reduced_loss, grad_norm, learning_rate, duration,
- iteration):
- self.add_scalar("training.loss", reduced_loss, iteration)
- self.add_scalar("grad.norm", grad_norm, iteration)
- self.add_scalar("learning.rate", learning_rate, iteration)
- self.add_scalar("duration", duration, iteration)
-
- def log_validation(self, reduced_loss, model, y, y_pred, iteration):
- self.add_scalar("validation.loss", reduced_loss, iteration)
- _, mel_outputs, gate_outputs, alignments = y_pred
- mel_targets, gate_targets = y
-
- # plot distribution of parameters
- for tag, value in model.named_parameters():
- tag = tag.replace('.', '/')
- self.add_histogram(tag, value.data.cpu().numpy(), iteration)
-
- # plot alignment, mel target and predicted, gate target and predicted
- idx = random.randint(0, alignments.size(0) - 1)
- self.add_image(
- "alignment",
- plot_alignment_to_numpy(alignments[idx].data.cpu().numpy().T),
- iteration)
- self.add_image(
- "mel_target",
- plot_spectrogram_to_numpy(mel_targets[idx].data.cpu().numpy()),
- iteration)
- self.add_image(
- "mel_predicted",
- plot_spectrogram_to_numpy(mel_outputs[idx].data.cpu().numpy()),
- iteration)
- self.add_image(
- "gate",
- plot_gate_outputs_to_numpy(
- gate_targets[idx].data.cpu().numpy(),
- F.sigmoid(gate_outputs[idx]).data.cpu().numpy()),
- iteration)
|